

INFRASTRUCTURE AS CODE TOOLS COMPARISON
ON AWS CLOUD ENVIRONMENT

SONGWUT COTCHARAT

A Thematic Paper Submitted in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

Department of Computer Engineering,
College of Innovative Technology and Engineering

Dhurakij Pundit University
Academic Year 2022

i

Thematic Paper Title INFRASTRUCTURE AS CODE TOOLS COMPARISON
ON AWS CLOUD ENVIRONMENT

Author Songwut Cotcharat
Thematic Paper Advisor Dr. Chaiyaporn Khemapatapan
Program Computer Engineering
Academic Year 2022

ABSTRACT

 In the agile world, characterized by an increased demand for speed and IT projects,
teams are increasingly reliant on task automation. Consequently, Infrastructure engineers face
the challenge of effectively managing their workloads. When it comes to cloud-based
infrastructure, Infrastructure as Code (IaC) serves as an effective means of automating manual
tasks, offering benefits such as scalability, speed, and transparency. Given its recent
emergence, there are numerous IaC tools available for selection. The most commonly tools
used in the industry are AWS CloudFormation and Terraform. This study aims to compare
these tools and determine which one is more suitable. The research methodology involved
conducting a survey to build a three-tier application infrastructure on AWS using IaC, while
simultaneously examining and comparing the results obtained from these tools. The findings
indicate that, in terms of superiority, there is no significant disparity between Terraform and
CloudFormation; however, both tools may require substantial investments of time and
resources due to their inherent complexity. The choice between these tools also depends on
the specific requirements and preferences associated with building applications or
infrastructures. Moreover, it is worth noting that the IaC community is rapidly expanding, and
comprehensive support for advanced use cases can be easily found in official documentation.
In summary, effectively evaluating and comparing these tools proves to be a challenging task.
Nevertheless, this research provides valuable insights into their functionalities and how they
can be effectively employed within various environments.

 Advisor

ii

ACKNOWLEDGEMENT

 I would like to express my sincere thanks to my advisor, Dr. Chaiyaporn
Khemapatapan for his valuable help and constant patient and encouragement throughout the
course of this research. I am most grateful for his teaching and advice, not only the research
methodologies but also many other methodologies in life. I would not have achieved this
research without all the support that I have always received from him. Finally, I most gratefully
acknowledge all of my classmate for all their support throughout the period of the study and
research.

Songwut Cotcharat

iii

TABLE OF CONTENTS

 Page
ABSTRACT... ... i
ACKHOWLEDGEMENT.. ii
TABLE OF CONTENTS.. iii
LIST OF TABLES.. v
LIST OF FIGURES... vi
CHAPTER

1. INTRODUCTION... 1
1.1 Problem and Background... . 1
1.2 Purpose/Objective... 3
1.3 Research Scope.. 3
1.4 Tools... 3
1.5 Research Action Plan... . 4
1.6 Expected Benefit... 4

2. Concept, Theory and Literature Review.. 5
2.1 Related Concept and Theory.. . 5
2.2 Literature Review.. . 15

3. Research Methodology... . 19
3.1 Methodology... . 19
3.2 Research Tools... 19
3.3 System Development and Implementation... 20

4. System Testing and Result... . 40
4.1 Capability Test.. 40
4.2 Efficiency Test... ... 46
4.3 Error Handling Test.. 51
4.4 Rollback Ability Test………………………………………………………………………………………. 54

5. Result Summary and Suggestion... 58
5.1 Result Summary... 58
5.2 Overall Conclusion.. 60
5.3 Suggestions.. 61

iv

TABLE OF CONTENTS (Continued)

CHAPTER Page
BIBLIOGRAPHY.. 62
APPENDIX.. 64

A. Result on AWS Console.. 65
CURRICULUM VITAE.. 68

v

LIST OF TABLES

TABLE Page
1.1 Research Action Plan…..…... 4
2.1 Terraform and Cloud Formation Physical Differences …...................................... 14
4.1 Result of the capabilities test. Classify by the resource type that needed to

be built …...………………….
46

4.2 Result of the execution Time Measurement …... 48
4.3 Efficiency Test Result ….. 50
4.4 Error Handling Test Result …... . 53
4.5 Roll back Test Result …..
5.1 Overall Conclusion...

57
60

vi

LIST OF FIGURES

FIGURE Page
1.1 Traditional Setup Infrastructure …... . 1
1.2 Basic Infrastructure as Code …... . 2
2.1 The Cloud stack architecture …... . 6
2.2 DevOps lifecycle …...………. 7
2.3 Infrastructure as a Code-Pipeline Source …... 12
2.4 Using IaC on Cloud …... 14
2.5 Example Research Workflow …... .. 16
2.6 IaC Tools usages …...………. 17
3.1 Overall System Design …... . 20
3.2 Terraform Design …...……… 21
3.3 Terraform Workflow …... 22
3.4 Create AWS Account on AWS console …... . 22
3.5 Install AWS CLI Command ….. . 23
3.6 AWS Credential Configure …... . 23
3.7 vpc-module.tf file …...……. 24
3.8 vpc-variables.tf file …...…… 25
3.9 ec2-public.tf file …...……….. 25
3.10 ec2-private.tf file …...……. 26
3.11 ec2-variable.tf file …...….. 26
3.12 ELB-classic-loadbalancer.tf file …...
3.13 rdsdb.tf file... ...
3.14 rds-varibles.tf file..
3.15 securitygroup-loadbalancersg.tf file...
3.16 securitygroup-privatesg.tf file..
3.17 securitygroup-publicsg.tf file..
3.18 securitygroup-rds.tf file...
3.19 Cloud Formation Workflow..
3.20 vpc,yml file……………………………………………………………………………………………………….
3.21 Database.yml file……………………………………………………………………………………………..

27
28
29
30
30
31
31
32
32
36

vii

LIST OF FIGURES (Continued)

FIGURES Page
3.22 natgateway.yml file …... .. 38
4.1 Terraform init…...…………….. 40
4.2 Terraform validate …...…… 41
4.3 terraform plan …...………….. 41
4.4 terraform apply …...…………
4.5 Create Cloud Formation Stack..
4.6 Cloud Formation Stack Execution Completed..
4.7 Terraform Execution Timestamp..
4.8 Cloud Formation Stack Execution Timestamp..
4.9 Time Execution Comparison..
4.10 Result of the execution Time Measurement...
4.11 Terraform Memory Usage...
4.12 Example Terraform Error..
4.13 Example Cloud Formation Stack Error..
4.14 Example Terraform State file..
4.15 Example Terraform Destroy...
4.16 Example Cloud Formation Stack Auto Rollback...
4.17 Manual Delete for Rollback Cloud Formation Stacks..

43
44
45
47
47
48
49
50
52
53
55
55
56
56

26/07/66

CHAPTER 1
INTRODUCTION

1.1 Problem and Background
 In the modern day, the ability to provision, configuration, and deployment of the
infrastructure and application are very challenging and very competitive. The engineer must
have a various knowledge in almost every technology field. The old ways to do this is that
everything needs to be done manually and individually. The problem starts with on how you
plan to buy a hardware, how you can configure all the essential tools to be compile with your
application, and how you deploy your applications. This process could take months to
complete before you can start a real work on that project. Not to include how difficult you
have to maintenance and monitoring your own infrastructure. A lot of engineering time will
spend on those topics.

Figure 1.1 Traditional Setup Infrastructure

Source: Bloom, D. (2017)

The Organizations that can provision, configuration their infrastructure, and deploy
the application early and with high frequency will have the ability to compete in the market.
A new approach called DevOps and Infrastructure as a code (IaC) promise to allow the
organization to reach these goals. Many organizations seem interested in this new approach
of organizing development and operations, as shown by the number of publications dealing
with DevOps in popular press. DevOps has also become a topic of active scientific research,

2

26/07/66

as demonstrated by the increasing number of scientific papers published on the topic.
Infrastructure as a code (IaC) is the practice to automatically configured system dependencies
and to provision local and remote instances. Practitioners consider IaC as a fundamental pillar
to implement DevOps practices, which helps them to rapidly deliver software and services to
end-users. Information technology (IT) organizations, such as Facebook, Google, and Netflix
have adopted IaC.
 If you work in a technical team that builds and runs IT infrastructure, then cloud
and infrastructure automation technology should help you deliver more value in less time,
and to do it more reliably. But in practice, it drives ever-increasing size, complexity, and
diversity of things to manage. These technologies are especially relevant as organizations
become digital. “Digital” is how people in business attire say that software systems are
essential to what the organization does. The move to digital increases the pressure on you to
do more and to do it faster. You need to add and support more services. More business
activities. More employees. More customers, suppliers, and other stakeholders. Cloud and
automation tools help by making it far easier to add and change infrastructure. But many
teams struggle to find enough time to keep up with the infrastructure they already have.
Making it easier to create even more stuff to manage is unhelpful.

Figure 1.2 Basic Infrastructure as Code

Source: Taylor, T. (2022)

3

26/07/66

1.2 Purpose/Objective
 1.2.1 To measure the efficiency and the effectiveness of two IaC tools to use on AWS
(Terraform and AWS CloudFormation).
 1.2.2 To help individual or organization decide which tools they should select for their
works.
 1.2.3 To bring introduction to the new technology for personal or business use.
 1.2.4 To prove that the traditional ways of how-to setup infrastructure and application
should not be the best anymore.

1.3 Research Scope
 1.3.1 Design a 3-tier web application that needs to be built on Amazon Web Service(AWS).
 1.3.2 Write a terraform and AWS cloud formation script to build a same infrastructure on
Amazon Web Service (AWS).
 1.3.3 Start build the infrastructure on the centralize personal host machine.
 1.3.4 Analyze the result by comparing these topics.

1.3.4.1 The capabilities of both tools (What it can and cannot do).
1.3.4.2 The efficiency of both tools (Measuring time consuming, resource consu-

ming).
1.3.4.3 Error Handling
1.3.4.4 Rollback ability

1.4 Tools
 1.4.1 Personal computer with 10 Cores CPU and 16 GB of Memory
 1.4.2 MAC OS
 1.4.3 AWS CloudFormation
 1.4.4 Terraform Software
 1.4.5 AWS CLI
 1.4.6 AWS Account
 1.4.7 VS Code Text Editor

4

26/07/66

1.5 Research Action Plan

Table 1.1 Research Action Plan

Action TimeLine (Months)

1 2 3 4 5 6 7 8 9 10 11 12

1. Research and Collect Information

2. Infrastructure Design on AWS Cloud

3. Study Terraform Programming tool

4. Study AWS Cloud Formation tools

5. Create a terraform script

6. Create an AWS Cloud Formation script

7. build the infrastructure on AWS using

both tools

8. Analyze and adjust according to the result

9. Summarize the conclusion and make the

report

1.6 Expected Benefit

1.6.1 Introduce an infrastructure as code tool and concept to wider audience.
1.6.2 Can help business in term of cost optimization for using infrastructure as code

instead of the traditional way of provisioning.
1.6.3 Can help business improve daily productivity for an engineer by using more faster

and reliable infrastructure as code tools.

26/07/66

CHAPTER 2
CONCEPT, THEORY AND LITERATURE REVIEW

2.1 Related Concept and Theory
 2.1.1 Cloud Computing

Cloud computing is a relatively recent and currently very high-profile method of IT
Deployment. Compute facilities such as virtualized server hosting or remote storage accessed
via an API, are provided by a cloud provider to a cloud client. Often a client is a third party
company, who will use the compute facilities to provide an external service to their users. For
example, Amazon is a cloud provider supplying a storage API to Dropbox, who use the API to
provide a file synchronization service to domestic and commercial users. In many ways, cloud
computing resembles a move away from conventional desktop computing that has been the
hallmark of the previous decade, towards a centralized computing model. One stark difference
to the mainframes of the timesharing past is that the new paradigm is supported by vast data
centers containing tens of thousands of servers working in unison. These datacenters are
described as ‘Warehouse-Sized Computers’ (WSCs), reflecting their view that the machines
can collectively be regarded as a single entity (Artac et al., 2017). The coordination of these
machines is supported by specialist software layers, including virtualization technologies.

Most of the technologies involved in constructing and using cloud computing are
not new, but rather it is their particular combination and large-scale deployment that is novel.
The emergence of cloud computing would not have been possible without the growth in
virtualization and widespread internet access. Cloud computing promises to commoditize data
storage, processing and serving in the way envisioned by utility computing and service oriented
architecture.

https://www.sciencedirect.com/topics/computer-science/desktop-computing

6

26/07/66

Figure 2.1 The Cloud stack architecture

Cloud computing is frequently presented as a layered architecture, as shown in
However, in practice these layers are not distinct. For example, data storage services may be
regarded as infrastructure, a platform or an application, depending on exactly how those
services are being used. We deliberately avoid using these somewhat artificial distinctions.

Cloud hardware is typically composed of commodity server-grade ×86 computers
arranged in a shallow hierarchy composed of racks and clusters of racks. They are physically
located in a series of geographically distributed data centers. In the case of Amazon Web
Services, these data centers are split into discrete availability zones. Servers
run hypervisor technology such as Xen or VMWare, which manage multiple virtual machines
(VMs) on each physical machine. VMs are provided directly to client companies by providers
such as Rackspace or Amazon at the infrastructure layer. Each live virtual machine is
an instance of an offered VM configuration, which is principally defined by the memory and
processing power available to the VM. Every instance mounts a machine image, also known
as an operating system image. An image includes an operating system, and the required server
software such as web servers or transaction processing software.

 The most straightforward example of a platform-level service is Google App Engine,
where a customer provides code and Google automatically manages the scaling to respond
to incoming requests. Applications comprise most usage of cloud computing by the general
public. Popular current examples include Microsoft Office 365 and Gmail.

7

26/07/66

2.1.2 DevOps
The word "DevOps" is a mashup of "development’ and "operations" (Alexander, S.

2020) but it represents a set of ideas and practices much larger than those two terms alone,
or together. DevOps includes security, collaborative ways of working, data analytics, and many
other things. DevOps describes approaches to speeding up the processes by which an idea
goes from development to deployment in a production environment where it can provide
value to the user. These approaches require that development teams and operations teams
communicate frequently and approach their work with empathy for their teammates.
Scalability and flexible provisioning are also necessary. With DevOps, those that need power
the most, get it through self service and automation. Developers, usually coding in a standard
development environment, work closely with IT operations to speed software builds, tests,
and releases without sacrificing reliability.

Figure 2.2 DevOps lifecycle

Source: Ramamoorthy, C. (2021)

Because of the continuous nature of DevOps, practitioners use the infinity loop to
show how the phases of the DevOps lifecycle relate to each other. Despite appearing to flow
sequentially, the loop symbolizes the need for constant collaboration and iterative
improvement throughout the entire lifecycle (Artac et al., 2017).

8

26/07/66

2.1.3 Automation Provisioning
Provisioning is the process of creating and setting up IT infrastructure, and includes

the steps required to manage user and system access to various resources. Provisioning is an
early stage in the deployment of servers, applications, network components, storage, edge
devices, and more.
 Provisioning is not the same thing as configuration management, but they are both
steps in the deployment process. Once a system has been provisioned, the next step is to
configure the system and maintain it consistently over time.
 Server provisioning is the process of setting up physical or virtual hardware; installing
and configuring software, such as the operating system and applications; and connecting it to
middleware, network, and storage components. Provisioning can encompass all of the
operations needed to create a new machine and bring it to the desired state, which is defined
according to business requirements.
 Cloud provisioning includes creating the underlying infrastructure for cloud
environment, like installing networking elements, services, and more. Once the basic cloud
infrastructure is in place, provisioning involves setting up the resources, services, and
applications inside a cloud.
 User provisioning is a type of identity management that involves granting
permissions to services and applications within a corporate environment like email, a
database, or a network often based on a user's job title or area of responsibility. The act of
revoking user access is often referred to as deprovisioning.
 An example of user provisioning is role based access control (RBAC). Configuring
RBAC includes assigning user accounts to a group, defining the group’s role for example, read-
only, editor, or administrator and then granting these roles access rights to specific resources
based on the users’ functional needs.
 When referring to IT infrastructure, network provisioning is the setting up of
components such as routers, switches, and firewalls; allocating IP addresses; and performing
operational health checks and fact gathering. For telecommunications companies, the term
“network provisioning” refers to providing users with a telecommunications service, such as
assigning a phone number, or installing equipment and wiring.
 Service provisioning includes the set up of IT-dependent services for an end user
and managing the related data. Examples of service provisioning may include granting an

9

26/07/66

employee access to a software-as-a-service platform, and setting up credentials and system
privileges to limit access to certain types of data and activities.
 Provisioning often requires IT teams to repeat the same process over and over, such
as granting a developer access to a virtual machine in order to deploy and test a new
application. This makes manually provisioning resources time-consuming and prone to human
error, which can delay the time-to-market of new products and services. Manual provisioning
also pulls busy IT teams away from projects that are more important to an organization’s
larger strategy. Today, most provisioning tasks can easily be handled through automation,
using infrastructure-as-code (IaC). With IaC, infrastructure specifications are stored in
configuration files, which means that developers just need to execute a script to provision the
same environment every time. Codifying infrastructure gives IT teams a template to follow for
provisioning, and although this can still be accomplished manually, automation tools can
make this process far more efficient
 Using repeatable workflows, automated provisioning provides greater consistency
across modern IT environments, reduces the likelihood of errors and loss of productivity, and
frees IT teams to focus on strategic business objectives. With this more efficient provisioning
process:

• End users and developers can gain access to the IT resources and systems they
need in less time, empowering them to be more productive.

• Developers can bring applications and services to market faster, which can
improve customer experience and revenue.

• IT teams can spend less time on menial, repetitive tasks like correcting errors
and misconfigurations, which allows them to focus on more critical priorities.

2.1.4 Infrastructure as Code (IaC)
Infrastructure as Code uses DevOps methodology and versioning with a descriptive

model to define and deploy infrastructure, such as networks, virtual machines, load balancers,
and connection topologies (Brikman, Y. 2019). Just as the same source code always generates
the same binary, an IaC model generates the same environment every time it deploys.
 The value of adopting IaC may not be apparent to stakeholders especially the ones
that do not work with infrastructure. The practice of IaC is often thought of as chaotic and
unnecessary. There is no need in automating something that is going to be built only once.
However, even the best IT systems tend to get updates or become broken. The complex and

10

26/07/66

time consuming is example how cloud resources are deployed with manual processes. A
developer by means of UI or CLI sporadically creates, updates, or deletes resources. This
process could happen a multitude of times by more than one developer. As a result, rarely
anyone in the team would have a clear understanding about the state of the resources
(Guerriero et al., 2019).
 In the long-term, IaC makes it easier to add repeatability to the infrastructure and
understand future changes as every change follows the same deployment process. On Figure
2 an example flow chart shows how IaC could be utilized, is presented. The infrastructure gets
documented, tested, and deployed automatically and it will always be pushed to version
control and have a visible history of deployment history. When infrastructure code is ready,
the resources can be re-created again with a click of a button in case of failure, update, or
breaking change. Defining infrastructure in an automated manner removes the need for routine
tasks and save developers’ time to focus on improving development systems.

 Adoption of IaC is less likely to happened in old fashioned or monolithic oriented
teams. In these teams, automation is not a concern, and they tend to think that infrastructure
should be handled by someone else. IaC need arises in teams with certain software
development practices. One of the main characteristic factors is the use of cloud computing
to host applications and infrastructure. As resources’ numbers starts to grow, it becomes very
difficult to keep track of the state of the environment. IaC can prove itself useful and time
saving to manage those resources. Teams might also be applying Agile or DevOps and find IaC
to be the way to make infrastructure provisioning easier. When starting with IaC teams should
be aware about version control and code review practices as both are important for knowing
about the changes that are happening to the environment. To provide a full automation
capability with IaC it also should be integrated with CI/CD pipelines. IaC aids developers to
continuously learn and improve systems as developers learn to be afraid of breaking the
infrastructure.
 There is no best scenario for how to use IaC tools within a project as every project
is unique. The IaC community is still in a process of learning and discovering better practices.
In each case IaC should be tailored to a project’s needs to fulfil its potential. IaC can be
applied in projects in multiple ways: from moving a part of existing infrastructure to the cloud,
to building an application based on a microservice architecture and other cloud offerings.
Developers might as well start small and only deploy single resources in an automated way.

11

26/07/66

It can also be beneficial to have the infrastructure code grow together with the application
code.
 Supporting a multi-environment and multi-tenant setup is another case where IaC
provides most benefits. Instead of spending days to recreate the same environment manually,
adding a new customer can be done by adding a new parameters file and setting up an
additional deployment task. A test environment can also be created and destroyed on
demand to reduce costs of running resources that are used only occasionally.
 Starting to write infrastructure in a form of code can be challenging especially if
previously GUI was used to perform these tasks. There is a long list of decisions that
developers should make prior to setting up IaC. They need to decide which tool to pick from
a wide array of different tools. IaC code resides in version control and developers need to
plan the location and structure of their code. Every environment needs to be configured to
properly store parameters and secrets. Before the code is executed it should be tested and
after it is running be updated and follow upkeep rules. As developers create infrastructure,
they can decide to define some resources as modules that can be used to speed up creation
of future resources also in subsequent projects.
 For consulting companies that operate by projects and create resources into their
customer’s environment, IaC can bring both advantages and problems. On the one side it
allows repeatability and consistency for the infrastructure, conversely it generates difficulties
related to permissions and compliment with customers’ security policies. Some customers
are not convinced by automated resource provisioning as it can generate additional costs.
Often there is no professional on their side who is experienced enough to approve the code.
For some customers it might also get difficult to explain the overhead cost that the initial IaC
work requires
 Starting to write infrastructure in a form of code can be challenging especially if
previously GUI was used to perform these tasks. There is a long list of decisions that
developers should make prior to setting up IaC. They need to decide which tool to pick from
a wide array of different tools. IaC code resides in version control and developers need to
plan the location and structure of their code. Every environment needs to be configured to
properly store parameters and secrets. Before the code is executed it should be tested and
after it is running be updated and follow upkeep rules. As developers create infrastructure,
they can decide to define some resources as modules that can be used to speed up creation

12

26/07/66

of future resources also in subsequent projects. For consulting companies that operate by
projects and create resources into their customer’s environment, IaC can bring both
advantages and problems. On the one side it allows repeatability and consistency for the
infrastructure, conversely it generates difficulties related to permissions and compliment with
customers’ security policies. Some customers are not convinced by automated resource
provisioning as it can generate additional costs. Often there is no professional on their side
who is experienced enough to approve the code. For some customers it might also get difficult
to explain the overhead cost that the initial IaC work requires.

Figure 2.3 Infrastructure as a Code-Pipeline Source

Source: Mike (2022)

2.1.5 Infrastructure as Code on Cloud
A fundamental principle of DevOps is to treat infrastructure the same way

developers treat code. Application code has a defined format and syntax. If the code is not
written according to the rules of the programming language, applications cannot be created.
Code is stored in a version management or source control system that logs a history of code
development, changes, and bug fixes. When code is compiled or built into applications, we
expect a consistent application to be created, and the build is repeatable and reliable
(Labouardy, M. 2021).

13

26/07/66

Practicing infrastructure as code means applying the same rigor of application code
development to infrastructure provisioning. All configurations should be defined in a
declarative way and stored in a source control system. Infrastructure provisioning,
orchestration, and deployment should also support the use of the infrastructure as code.

Infrastructure was traditionally provisioned using a combination of scripts and
manual processes. Sometimes these scripts were stored in version control systems or
documented step by step in text files or run-books. Often the person writing the run books is
not the same person executing these scripts or following through the run-books. If these scripts
or runbooks are not updated frequently, they can potentially become a show-stopper in
deployments. This results in the creation of new environments not always being repeatable,
reliable, or consistent.

In contrast, AWS provides a DevOps-focused way of creating and maintaining
infrastructure. Similar to the way software developers write application code, AWS provides
services that enable the creation, deployment and maintenance of infrastructure in a
programmatic, descriptive, and declarative way. These services provide rigor, clarity, and
reliability. The AWS services discussed in this paper are core to a DevOps methodology and
form the underpinnings of numerous higher-level AWS DevOps principles and practices
(Campbell, B. 2020).

2.1.5.1 AWS CloudFormation, One of the most used IaC on Cloud tools is AWS
CloudFormation.It is a service provided by Amazon Web Services that enables users to model
and manage infrastructure resources in an automated and secure manner. Using
CloudFormation, developers and engineers can define and provision AWS infrastructure
resources using a JSON or YAML formatted Infrastructure as Code template (Contino, 2022).

2.1.5.2 Terraform, another one of the most famous tools is Terraform. Terraform
manages external resources (such as public cloud infrastructure, private cloud infrastructure,
network appliances, software as a service, and platform as a service) with "providers"
(Alexander, S. 2020). Hashi Corp maintains an extensive list of official providers and can also
integrate with community-developed providers. Users can interact with Terraform providers
by declaring resources or by calling data sources. Rather than using imperative commands to
provision resources, Terraform uses declarative configuration to describe the desired final
state. Once a user invokes Terraform on a given resource, Terraform will perform create, read,
update and delete actions on the user's behalf to accomplish the desired state. The

14

26/07/66

infrastructure as code can be written as modules, promoting reusability and maintainability.
Terraform plugin protocol is built gRPC, that allow terraform to communicate to the target
provider (zero Fruit, 2022).

2.1.5.3 Terraform and CloudFormation Physical Differences, the primary difference
between Terraform and CloudFormation is that Terraform is a multi-cloud platform, while
CloudFormation is specific to AWS. Terraform provides a common language to define and
provision cloud infrastructure, while CloudFormation is an AWS-specific solution that provides
a standard way to provision and manage AWS resources. Please see a side-by-side comparison
of Terraform and CloudFormation below.

Table 2.1 Terraform and CloudFormation Physical Differences

Criteria Terraform CloudFormation
Language HCL (Terraform own language) JSON or YMAL

State Management User Managed AWS Managed

AWS Compatibility Yes Yes
Multi Cloud Yes No

Cost Free Free

Figure 2.4 Using IaC on Cloud

Source: Josh, S. (2021)

15

26/07/66

2.2 Literature Review
 2.2.1 Adoption of Infrastructure as Code (IaC) in Real World
 Olga Murphy, JAMK University of Applied Sciences did a research an adaptation of
how the real world of infrastructure as a code. The conclusion was manual processes require
more time and are error prone, but IaC provides developers with the ability to automate
creation of infrastructure and support Cloud Data Ecosystems in an automated manner.
Adoption of IaC has a potential to lower companies’ expenses while improving time efficiency,
consistency, and transparency of their cloud infrastructure. As mentioned by Gartner and Hashi
Corp, there is clearly a lack of professionals that are competent enough to automate more
complex tasks and environments. Without these professionals, successful implementation of
IaC is greatly reduced and the potential benefits to industry would be negligible. To get more
IaC competent and fluent developers, industry wide adoption will be necessary. A big part of
adoption will include successfully learning IaC and opening discussion for its development.
From both the literature review and the results of the survey the best strategies for learning
IaC are to partition the subject into smaller, easily absorbed pieces and convey full teams to
follow said practices. However, this learning will require time and repetition, along with
commitment from management, customers and developers in companies.

16

26/07/66

Figure 2.5 Example Research Workflow

Source: Olga Murphy, (2021)

IaC generates significant interest from both academia and industry. There has been
an increasing number of publications and blogs on the subject in recent years. However, more
structured research is required to develop best practices and elaborate on the usage of tools.
Furthermore, more in-depth case studies and advanced knowledge is needed to broaden
insights and expertise in the field. One possible research avenue could be analyzing learning
materials provided by IaC tools’ vendors to see how successfully they convey core IaC
practices and how coherent their examples are to the needs of the field. It is through
investment of time and resources into research and learning that Infrastructure as Code would

17

26/07/66

become economically relevant. Once it generates enough interest from the customers it can
become truly widespread and reach its final adoption stage.

Figure 2.6 IaC Tools usages

Source: Olga Murphy, (2021)

2.2.2 Systematic mapping study of IaC
 Rahman A. at 41st International Conference on Software Engineering completed a
systematic mapping study of IaC and concluded that IaC as a trend is growing but is still under-
researched. They identified gaps in the existing literature connected to IaC. The authors
recommend multiple directions for the researchers that are investigating the IaC subject. They
emphasise a lack of empirical studies, defect analysis, security, anti-patterns, and knowledge
and training. IaC supports DevOps processes by simplifying resource provisioning. While
DevOps is mostly about organisational culture, IaC is focused on the tools and how those
tools are used by practitioners within teams and projects. As various tools are emerging quickly
it takes efforts to learn them. While there is a vast number of sources and grey literature
available, there is no de facto standard on how IaC should be implemented. This is due to
multiple reasons: tools are diverse, use cases for IaC are broad and often are not well defined.

18

26/07/66

 2.2.3 Challenges of adopting agile methods in a public organization
International Journal of Information Systems and Project Management Nuottila, J.,

Aaltonen, K., & Kujala, J. conducted a case study of DevOps in multiple companies. They have
observed the DevOps practices and collected feedback on how each case identified the goals
and benefits of DevOps adoption. They also identified IaC practices separately from DevOps
context. The authors discussed the benefits of IaC while noting that in some cases scripts have
been provisioned by the operations teams. The same cases described that developers did not
have much knowledge of IaC but that it could be acquired in the future from the operations
team.

26/07/66

CHAPTER 3
RESEARCH METHODOLOGY

3.1 Methodology
 3.1.1 Study, research, analyze on how we should provision the server on public cloud-
(AWS) by using infrastructure as code called “Terraform” and “CloudFormation” and compare
both tools efficiency. To get the result we wanted on what should be the recommendation
tools for organization or company to use to get the better experience and reduce the
workload on infrastructure provisioning. Include study about an emerging technology that can
be adapted to use to accomplish the goal and the result for this research.
 3.1.2 Analyze and Design a 3-tier web application that needs to be built on Amazon Web
Service (AWS).
 3.1.3 Build and write a terraform and AWS cloud formation script to build a same infra-
structure on Amazon Web Service (AWS).
 3.1.4 Start building the infrastructure on the centralize personal host machine by running
them step by step.
 3.1.5 Test running all the environments by using both tools on the same infrastructure
environments.
 3.1.6 Compare both tools and analyze the test result according to the methodology that
has been designed and Improve the result.
 3.1.7 Conclusion and produce the report.

3.2 Research Tools
 3.2.1 Personal computer with 10 Cores CPU and 16 GB of Memory
 3.2.2 MAC OS
 3.2.3 AWS CloudFormation
 3.2.4 Terraform Software
 3.2.5 AWS CLI
 3.2.6 AWS Account
 3.2.7 VS Code Text Editor

20

26/07/66

3.3 System Development and Implementation
 The process will start by using IaC tools building AWS infrastructure 3 tier web
application with high availability and high scalability. The 3-tier web application will include
VPC, Internet Gateway, Security group, Application Load Balancer, Private and Public Subnets,
EC2 with Auto scaling group, and Database with high availability.

Figure 3.1 Overall System Design

From Figure 3 .1 , We will create 3 tier web application that include web tier which
will access from the internet. Application tier, which will access by only private subnet, and
lastly DB tier which again can access to only a private subnet. All 3 tier will form a web
application infrastructure provisioning that will be ready to use by a developer. All of this will
using terraform and CloudFormation stacks to provision them.

3.3.1 Terraform Implementation, in this step terraform script will be created to build a-
3tier web application which consist with all the infrastructure module script in it.

21

26/07/66

Figure 3.2 Terraform Design

22

26/07/66

Figure 3.3 Terraform Workflow

Source: https://terraformguru.com/terraform-real-world-on-azure-cloud/03-Terraform

Command-Basics

From Figure 3.2 and 3.3. We will be creating the terraform module and execute the
terraform script to provision the resource on AWS.

3.3.1.1 Prerequisites, to have terraform to communicate to AWS. The must do steps
are having AWS account, AWS CLI Installed, and AWS credential configured locally.

Figure 3.4 Create AWS Account on AWS console

23

26/07/66

From Figure 3.4, go to https://portal.aws.amazon.com/billing/signup#/start/email to
create a new AWS account using work or personal email.

Figure 3.5 Install AWS CLI Command

 From Figure 3.5, using command line tools to install AWS CLI by following each
command.

Figure 3.6 AWS Credential Configure

From Figure 3.6 using command “aws configure” to configure the credentials. The
AWS Access Key ID and AWS Secret Access Key were generated when the AWS have been
created. Download it and enter the same value. For Default region name, enter the preferred
AWS region

3.3.1.2 Create Terraform VPC Module file, which include 2 files.
vpc-module.tf, this script will be accommodating the creation of VPC

environment on cloud that will include VPC itself, Public and Private Subnet, Nat Gateway,
Internet Gateway and routing destination for each subnet.

24

26/07/66

Figure 3.7 vpc-module.tf file

vpc-variables.tf, this script will collect all the variables that will be using
by the module.

25

26/07/66

Figure 3.8 vpc-variables.tf file

vpc-output.tf, this script will create a display of an output value after all
the creation of the VPC module succeed. This will be used to verify if all the VPC module
resource has been created correctly.

3.3.1.3 Create Terraform EC2 Module file, which includes 3 files.
ec2-public.tf, this script will create two EC2 instances, one in each

availability zone. They will host the web server and both machines will have an access in and
out of the internet through internet gateway.

Figure 3.9 ec2-public.tf file

26

26/07/66

ec2-private.tf, this script will create two EC2 instances, one in each
availability zone. They will host the application server and both machines can communicate
with the private subnet. However, they can also go out to the internet by using Nat Gateway
service that already create on the VPC model file.

Figure 3.10 ec2-private.tf file

ec2-variables.tf, this script will collect all the variables that will be using
by the EC2 module.

Figure 3.11 ec2-variable.tf file

3.3.1.4 Create Terraform Load Balancer Module file
ELB-classic-loadbalancer.tf, this script Load balancer Module will be used

for direct the traffic between two EC2 public instance in two availability zones.

27

26/07/66

Figure 3.12 ELB-classic-loadbalancer.tf file

3.3.1.5 Create Terraform RDS Module file, The Amazon RDS id the database service
on AWS. In this research we will be using RDS with MySQL database. This will include 2 files
for this module.

rdsdb.tf file, this model script will create RDS with MySQL database version
8.0. It will have only one instance and will be configuring with all the database information

28

26/07/66

Figure 3.13 rdsdb.tf file

29

26/07/66

rds-variables.tf, this script will collect all the variables that will be using
by the RDS module.

Figure 3.14 rds-varibles.tf file

 3.3.1.6 Create Terraform Security Group Module file, this module will create the
security group for EC2, Load Balancer and RDS. The security group are group of the rules that
will be determine on who which IP address can be access to each resource on the
environment. This module will include 4 files.

securitygroup-loadbalancersg.tf, this script will create the rule to allow
who can access the Load Balancer. In this research, the rule will allow any IP addresses to
access via port 81.

30

26/07/66

Figure 3.15 securitygroup-loadbalancersg.tf file

securitygroup-privatesg.tf, this script will create the rule to allow who can
access the EC2 private application instance. In this research, the rule will allow any subnet in
the VCP to access via port 22 and 80.

Figure 3.16 securitygroup-privatesg.tf file

31

26/07/66

securitygroup-publicsg.tf, this script will create the rule to allow who can
access the EC2 public instance. In this research, the rule will allow any IP Address to access
via port 22 and 80.

Figure 3.17 securitygroup-publicsg.tf file

securitygroup-rds.tf, this script will create the rule to allow who can access
the RDS private application instance. In this research, the rule will allow any subnet in the VPC
to access via port 3306.

Figure 3.18 securitygroup-rds.tf file

32

26/07/66

3.3.2 Cloud Formation stack implementation, in this step Cloud Formation stack scripts
will be created using yml format file, to build a 3tier web application which consist with all
the infrastructure module script in it.

Figure 3.19 Cloud Formation Workflow

3.3.2.1 Create VPC Cloud Formation Template
vpc.yml, this script will be accommodating the creation ofVPC environ-

ment on cloud that will include VPC itself, 4 EC2 Instances (2 for public and 2 for private),
Public and Private Subnet, Internet Gateway, security groups for the VPC and and routing
destination for each subnet. In this file, in order to create EC2, the researcher choose to use
the autoscaling group to create EC2 instead of defining the EC2 stack.

Figure 3.20 vpc,yml file

33

26/07/66

Figure 3.20 vpc.yml file (continue)

34

26/07/66

Figure 3.20 vpc.yml file (continue)

35

26/07/66

Figure 3.20 vpc,yml file (continue)

36

26/07/66

3.3.2.1 Create Amazon RDS CloudFormation Template
database.yml, this template will create RDS with MySQL database version

8.0. It will have only 1 instance and will be configuring with all the database information. In
this template there will be some parameter that does not define yet, as the limitation of the
CloudFormation is that the resource ID will never be known. If the VPC itself has not been
cerate yet. So, the researcher decides to use parameter with drop-down list and then it can
be chosen when creating this stack after the VPC Stack has been create

Figure 3.21 Database.yml file

37

26/07/66

Figure 3.21 Database.yml file (Continue)

38

26/07/66

3.3.2.1 Create Nat Gate CloudFormation Template

natgateway.yml, this template will build the Nat Gateway that will allow
the 2 private EC2 instances that host the application to access the internet as they might need
to connect with APIs, but it will not allow any one from outside access these instances directly.
The reason we need to separate the template of the Nat Gateway because when we build
the VPC and all the subnets. We still do not have the subnet ID that need to be accommodate
with Nat Gateway. That is why we need to build the VPC first then build the Nat Gateway
after.

Figure 3.22 natgateway.yml file

39

26/07/66

Figure 3.22 natgateway.yml file (Continue)

26/07/66

CHAPTER 4
SYSTEM TESTING AND RESULT

 In this chapter, we will discuss about the system testing and result on the
comparison between Terraform and CloudFormation stack. The comparation criteria will be
as follows.
 - Capability
 - Efficiency
 - Error Handling
 - Rollback Ability

4.1 Capability Test
 4.1.1 Terraform Capability Test, the capabilities of the terraform will be test by execute
the command on the CLI by following the below steps.

4.1.1.1 Run “terraform init” command, this will initialize terraform directory and
terraform lock file. Including install provider dependencies plugin.

Figure 4.1 Terraform init

From Figure 4.1 It showed that terraform init command is successful as all the plugin
and dependencies file has been created.

41

26/07/66

 4.1.1.2 Run “terraform validate” command, this will validate the terraform script to
make sure there are no error for the code.

Figure 4.2 Terraform validate

From Figure 4.2 It showed that terraform validate command is successful. Meaning
that there is no error on the terraform script and configurations the were created.
 4.1.1.3 Run “terraform plan” command, this will give you an execution plan and
gives you a chance to review what would change on your infrastructure. It also collects the
new desired lock state of the terraform., in case it needs to be rollback.

Figure 4.3 terraform plan

42

26/07/66

Figure 4.3 terraform plan (Continue)

From Figure 4.3, It showed that how many resource will be added on to the AWS
infrastructure, we can review on each resource that it need to be add.
 4.1.1.4 Run “terraform apply” command, this will apply all the change on to AWS.
Your AWS resources will get provisioned according to the script.

43

26/07/66

Figure 4.4 terraform apply

From Figure 4.4 It showed the output that all the resources configurations have
been provisioning on to AWS.

44

26/07/66

4.1.1.5 Check on AWS console to see if the infrastructure resources that we are
provisioning using terraform are really exists on AWS
 4.1.2 Cloud Formation Stack Capabilities Test, create a stack on AWS CloudFormation
page, create a stack by upload the template each template file start from “vpc.yml”,
“database.yml”, and “natgateway.yml” in order. The provisioning of the resource will be start
after stack has been create. Wait for one to finished before continuing the next one.

Figure 4.5 Create Cloud Formation Stack

From Figure 4.5, the template needs to be uploaded to create the stack and the
CloudFormation stack will run immediately after the stack has been created. To create a stack
the template file can only be upload one file at a time. We can run the multiple stacks in
parallel hence, each stack is not depending on each other’s. If the stack has the dependencies,
we must create the stack that other depends on first before creating another stack. For
example, in this case the VPC stack need to create first before we can create the database
stack because database must have the VPC before it can exist.

45

26/07/66

Figure 4.6 Cloud Formation Stack Execution Completed

From Figure 4.6, after creating a stack and wait for everything to run. It should show
that that all the stacks are complete.
 4.1.3 Capability Test Result
 After completed the creation of the infrastructure on AWS using Terraform and
Cloud Formation stack. The result will be gathered to see if all necessary components that
needed for 3 tier web application were built successfully using both tools.

46

26/07/66

Table 4.1 Result of the capabilities test. Classify by the resource type that needed to be built

Resource Types Terraform CloudFormation

VPC and Its Components ✓ ✓

Security Group ✓ ✓

EC2 (Private and Public) ✓ ✓

Load Balancer ✓ ✓

Amazon RDS (Database) ✓ ✓

Remark: ✓ = Successful  = Unsuccessful

From Table 4.1, All the resources type that need to be provisioned on AWS can
be provisioned using both tools, so we cannot conclude on which tools is better in terms of
the capabilities test.

4.2 Efficiency Test
 On the efficiency test, we will measure the time for start to finish when we
execute all the provisioning tasks and measure the CPU and memory resources that
terraform needed during the execution.

- Terraform and CloudFormation Stack need to be run on the same computer.
- The computer spec that uses to run this have 10 Cores CPU and 16 GB of

Memory.
- All the programs and application on the computer need to be closed except for

the terraform and the CloudFormation AWS web browser.
- The time measurement will be done on each resource type that ha s been

created.

47

26/07/66

- The computer resources maturement during the executions will be measured
during execution time from start to finish.

- CloudFormation Stack cannot be measure for the resources use, because it is
AWS manage service. When execute the stack, it does not use any use devices resource.
Except for the browser that resource that need to because to open the AWS CloudFormation
Stack’s URL. The conditions for the measurement here are as follows.
 4.2.1 Time Measurement Test Result
 The time measurement for both tools can be done easily as both tools has a time
stamp for each resource tasks that created as in Figure 4.7 and 4.8

Figure 4.7 Terraform Execution Timestamp

Figure 4.8 Cloud Formation Stack Execution Timestamp

48

26/07/66

We measure each tools execution time 5 times and find the average for each tool.
Please fine the result on the table 4.2 and Figure 4.10 below.

Table 4.2 Result of the execution Time Measurement

 Resource Terraform Execution Time

(mm:ss)
CloudFormation Stack Execution

Time (mm:ss)
T1 T2 T3 T4 T5 Avg. T1 T2 T3 T4 T5 Avg. Diff%

VPC
Components

02:37 02:23 02:45 02:11 02:19 2:27 01:33 01:16 01:34 01:22 01:29 1:27 51.28

Security
Group

00:26 00:24 00:30 00:26 00:25 0:26 00:02 00:02 00:02 00:02 00:02 00:02 171.43

Load
Balance

00:06 00:06 00:04 00:06 00:06 0:06 00:02 00:02 00:02 00:02 00:02 00:02 100

EC2 02:14 02:16 02:09 02:24 02:14 2:15 01:11 01:19

01:07 01:14 01:13 01:13 58.9

Amazon RDS 17:50 18:44 18:23 17:55 18:09 18:00 14:40 14:47 14:35 14:22 14:06 14:29 21.65

Total 23:22 24:28 24:25 23:03 23:21 24:13 17:28 17:26 17:20 17:02 16:52 17:13 33.78

Figure 4.9 Time Execution Comparison

49

26/07/66

From Table 4.2, and Figure 4.8, We have found that Cloud Formation Stack
Execution Time are 33.78% faster compared to terraform with almost 10 minutes different.
The time for each task is also drastically different. For example, the big task like building the
amazon RDS, Cloud Formation Stack is 4 min quicker. The build of 4 EC2 Instances, Cloud
Formation Stack is 1 Min quicker as well and the build of VPC and its components, Cloud
Formation is also 1 minute quicker. Overall, you can see that for the time execution
standpoint, Cloud Formation Stack are much faster tool.

4.2.2 Device Resources Measurement Test Result (for Terraform Only)
 To measure the devices’ resource use during the terraform execution, we will
measure by use the MacOS built-in activity monitoring tool. The data will be collecting every
5 Minutes during the execution then average out how much resource would be use.

Figure 4.10 Terraform CPU Usage.

From Figure 4.9, the CPU usage for Terraform during the execution is not significant
at all. It only averages out at 3.56%. Base on 10 Cores of CPU.

50

26/07/66

Figure 4.11 Terraform Memory Usage

From Figure 4.9, the memory usage for Terraform during the execution is averages
out to 688.24MB. Which is not significant at all. The standard PC or MAC today should be
able to handle the execution task easily.
 4.3.3 Overall Efficiency Test Result, the overall result for efficiency will display table
below.

Table 4.3 Efficiency Test Result

Test Terraform CloudFormation

Time Measurement Test ★★★ ★★★★

Remark: ★= 30 Minutes up, ★★= 25-30 Minutes, ★★★= 20-25 Minutes,

★★★★= 15-20 Minutes, ★★★★★=1-15 Minutes

From Table 4.3, We can conclude that in terms of time efficiency, Cloud Formation
stack has the edge. However, for the Resource Used efficiency we cannot conclude as we
cannot measure Cloud Formation resource used as previously mentioned. Anyways, for

51

26/07/66

terraform, we recommended that the spec of 4 Cores CPU and 4 GB of memory of a basic
computer should be able to run Terraform without any issue.

4.3 Error Handling Test
 On the Handling Test, we will test how each tools handling the error. The criteria
that we will test are, how clear the error message display on the system? Are there any
instruction on how to fix the error display? How to rerun after it fixed and how easy to find
trouble shotting document online.
 4.3.1 Terraform Error handling, Terraform has the Diagnostic Concept as follows.
 4.3.1.1 Severity, Severity specifies whether the diagnostic is an error or a warning.
Terraform, nor the framework, supports other severity levels. Use logging for debugging or
informational purposes. An error will be displayed to the practitioner and halt Terraforms
execution, not continuing to apply changes to later resources in the graph. We recommend
using errors to inform practitioners about a situation the provider could not recover from.
A warning will be displayed to the practitioner, but will not halt further execution, and is
considered informative only. We recommend using warnings to inform practitioners about
suboptimal situations that the practitioner should resolve to ensure stable functioning (e.g.,
deprecations) or to inform practitioners about possible unexpected behaviors.

4.3.1.2 Summary is a short, practitioner-oriented description of the problem. Good
summaries are general—they don't contain specific details about values—and concise. For
example, "Error creating resource", "Invalid value for foo", or "Field foo is deprecated".

4.3.1.3 Detail, Detail is a longer, more specific practitioner-oriented description of
precisely what went wrong. Good details are specific—they tell the practitioner exactly what
they need to fix and how. For example, "The API is currently unavailable, please try the request
again.", "foo can only contain letters, numbers, and digits.", or "foo has been deprecated in
favor of bar. Please update your configuration to use bar instead. foo will be removed in a
future release".

4.3.1.4 Attribute, Attribute identifies the specific part of a configuration that caused
the error or warning. Only diagnostics that pertain to a whole attribute or a specific attribute
value will include this information.

52

26/07/66

Figure 4.12 Example Terraform Error

From Figure 4.11 The Terraform error message is very clear, it tells you exactly
what’s wrong, which file is wrong, where is the line number causing the error. Also, it includes
the recommendation on how you can fix it. The other positive point about the terraform
error handling is, it will throw you the error since you do the command terraform plan. So,
there will be no resources created if something is wrong with the configurations. Then you
can go and fix the code before executing it again. The rerun process is after you fixed the
code you can rerun the command from the top to execute everything again as previously
showed on the capability test section.
 4.3.2 CloudFormation Error handling, If AWS CloudFormation fails to create, update, or
delete your stack, we can view error messages or logs to help us learn more about the issue.
The following tasks describe general methods for troubleshooting a CloudFormation issue.
Use the CloudFormation console to view the status of your stack. In the console, you can
view a list of stack events while your stack is being created, updated, or deleted. From this
list, find the failure event and then view the status reason for that event. The status reason
might contain an error message from AWS CloudFormation or from a particular service that
can help you troubleshoot your problem. For more information about viewing stack events.
Aws website is also providing a significant amount of document on how you can handle the
errors.

53

26/07/66

Figure 4.13 Example Cloud Formation Stack Error.

From Figure 4.12 You can find the Terraform error message in a stack details menu
somewhat clear, it tells you what’s is wrong, but does not give you the details on where to
find the error. If the stack has failed it will stop the progress of that stack immediately. You
have an option to fix the stack using the built-in designer code editor tool and rerun the
stack or use your external coding IDE tool to fix the template and upload it again. Either way
it very easy to rerun.
 4.3.3 Error Handling Test Result, there are not much different on how easy or how hard
the error handling for both tools, please see table 4.3 for the result details based on the
criteria that mentioned previously.

Table 4.4 Error Handling Test Result

Test Terraform Cloud Formation

The error message ★★★★★ ★★★★

Fix Instruction Message ★★★★★ ★★★★

Rerun the failed task ★★★★★ ★★★★★

Online instruction ★★★★★ ★★★★★

Remark: The views and opinions expressed in this rating scale are those of the author and

do not necessarily reflect the official rating or position of Terraform and Cloud

54

26/07/66

Formation. ★= Very Difficult to Handle, ★★= Difficult to Handle, ★★★= Not

that Easy to Handle, ★★★★= Easy to Handle, ★★★★★= Very Easy to
Handle

From Table 4.3, The result in terms of Error Handling Test, Terraform is a little bit

better in the error message department as it showed much more clearer message even tell
you which line of the code is having a problem. While the CloudFormation Stack does not
give you that kind of details. On the other criteria, both online instructions can be found very
easily.

4.4 Rollback Ability Test
 On the Rollback ability test, every configuration management tools should have a
roll back ability. The reason is in case there was a mistake on the creation of provisioning.
The rollback ability gives you the chance to rollback to last working state. Both Terraform
and Cloud Formation Stack have ability to rollback. The criteria that we will test are to see
on which method of both tools are using to rollback and how complex is the rollback
process would be.
 4.4.1 Terraform Rollback Test, when execute the provisioning infrastructure resource
using Terraform. Terraform will store the state of managed infrastructure and configuration.
This state is used by Terraform to map real world resources to your configuration, keep track
of metadata, and to improve performance for large infrastructures.

This state is stored by default in a local file named "terraform.tfstate", butyou
also have an option to store it on the terraform cloud to version, encrypt, and securely share
it with your team.

Terraform uses state to determine which changes to make to your infrastructure
prior to any operation, Terraform does a refresh to update the state with the real
infrastructure.

The primary purpose of Terraform state is to store bindings between objects in
a remote system and resource instances declared in your configuration. When Terraform
creates a remote object in response to a change of configuration, it will record the identity of
that remote object against a particular resource instance, and then potentially update or
delete that object in response to future configuration changes.

55

26/07/66

Figure 4.14 Example Terraform State file

In order to rollback to the previous state of terraform. The command “terraform
destroy” need to be run. This command will give you a chance to review on what would get
destroy, you can review it before performing the rollback. After executing the command, the
resources that we provisioned after the previous state file will get destroy and everyth ing
will revert to the previous state. When destroy finished it will show on how many resources
has been destroy and how much time we are using to destroy each resource.

Figure 4.15 Example Terraform Destroy

 4.4.2 Cloud Formation Stack Rollback Test, same with Terraform, Cloud formation has
the also keep the state of your infrastructure that you can rollback to. Since Cloud Formation
is a managed AWS service, it checks the infrastructure consistently to detect whether the
provisioned infra is maintaining its state or not. CloudFormation receives a detailed response

56

26/07/66

if anything changes. Cloud Formation stack has a few ways to rollback to previous state as
follows.

4.4.2.1 Auto Rollback, If a stack fails to create by accident or user interaction, Cloud
Formation executes a rollback meaning to delete all previously created resources. The stack
itself stays in place in a rollback completed state to enable users to inspect and debug the
problems. It is not possible to create this stack again. You need to delete the stack and then
create the new template and create the stack again.

Figure 4.16 Example Cloud Formation Stack Auto Rollback.

From Figure 4.12, when the stack has reached failed state. The auto rollback will
kick in immediately to roll back everything to the previous state.
4.4.2.2 Manual Rollback, If the stack complete successfully and resources have been created
on AWS already. The only way to roll back to the previous state is to delete the stack that
already create. Then all the resources that have been provisioned will roll back to the previous
state.

Figure 4.17 Manual Delete for Rollback Cloud Formation Stacks

57

26/07/66

From Figure 4.13, if all the resource shas been create and provisioned already, User
need to initiate the delete of Cloud Formation Stack in order to manually rollback to previous
state.
 4.4.3 Roll back Test Result

Table 4.5 Roll back Test Result

Test Terraform Cloud Formation

State Lock (State file to roll back) ★★★★★ ★★★

Rollback Method ★★★★ ★★★★★

Difficulty ★★★★★ ★★★★★

Online instruction ★★★★★ ★★★★★

Remark: The views and opinions expressed in this rating scale are those of the author and

do not necessarily reflect the official rating or documentation of Terraform and

Cloud Formation. ★= Very Difficult to Handle, ★★= Difficult to Handle, ★★★=

Not that Easy to Handle, ★★★★= Easy to Handle, ★★★★★= Very Easy to
Handle.

From Table 4.3, The result in terms of Rollback Ability Test, Both tools have a

store state file. The rollback method is a bit better on Cloud Formation since it has the auto
rollback. Both are easy to roll back and have a robust online instruction.

26/07/66

CHAPTER 5
RESULT SUMMARY AND SUGGESTIONS

 In This chapter we’ll bring all the test result to conclusion on what would be the
recommendation Infrastructure as code tool to choose. The multiple tests were already done
based on five decision criteria. The test was also done multiple times to make sure that we
get the most accurate result as much as possible. It will also include the discussion point on
what should be improve that related to the objective of the research and recommendations
point on these Infrastructure as Code tool that will change the world of how we provision the
resources and infrastructure on cloud.

5.1 Result Summary
 5.1.1 Capability Test Result Summary
 Based the criteria that all the infrastructure resource types that needs to be
provisioned on AWS to accommodate the used of 3 tier application. All are them were
successfully built using both Terraform and AWS CloudFormation Stack. There might be some
differences on how each function and service was build. But overall, the result is very
satisfied that cannot concluded on which tools is better in terms of their capabilities.
 5.1.2 Efficiency Test Result Summary
 From the e f fi c i e n c y test standpoint, we can only measure how much time each
tools are using for execute the same provision resources tasks on AWS. We also can only
measure the device's CPU/Memory used during the terraform execution only, since
CloudFormation does not require a software to execute the task. It will execute directly on
AWS GUI console. From the time measurement test, we have found that, Overall execution
time of CloudFormation are 33.78% or 10 Minutes faster compared to terraform. Which is very
significant different.
 The conclusion here is that terraform is running on another environment or system
and that it will send out the configuration data to AWS. On the other hands, Cloud Formation
Stack is executed direct on AWS as it is one of their manage services, so the execution is
running on AWS resource that’s why the running time are much faster using Cloud Formation.

59

26/07/66

 5.1.3 Error Handling Test Summary
 The result of the handling test is that Terraform has much more clearer error
message compared to CloudFormation Stack. The Terraform message even guide you on how
and where to fix the issue. On the other hands, CloudFormation Stack give you enough
information for you to work on the error but sometimes don’t tell you exactly where to go
and look for the issue. The fix for the error for both tools are quite easy, if the problem is
found and need to be fix, generally go to the code change whatever it need to be change,
then re-run them again. The other thing that needs to point out is that, both tools have a
significant amount of online instruction and trouble shooting. Enough for anyone to read and
troubleshooting by tier own. The conclusion here is that Terraform might have an edge,
because they are providing much clearer message for debugging.
 5.1.4 Rollback Ability Test Summary
 The result of the roll back ability test came out that, both tools have the state file
that will keep the previous state of infrastructure configuration or provisioning. So, it quite
useful and easy for the roll back. The difference is the state file for Terraform can be store
either on a local for a single user or a remote location that can be access by the team. While
CloudFormation Stack state file is fully managed by AWS, as it makes a lot of sense since the
Cloud Formation is the AWS managed service. On the rollback steps the Cloud Formation
have the auto-roll back maneuver when the stack is failed, which is very useful. On the other
hands Terraform have only manual rollback maneuver. So, we can conclude that Cloud
Formation Stack are better in this department because of the auto-roll back maneuver.
 5.1.5 Physical Differences and Limitations Test Conclusion
 The conclusion of this might not be conclusive enough, since it more of the
information on test are just from the observation of the researcher that encounter along the
way. Anyways, there are many points that the researcher can point out here such as Cloud
Formation Stack only support AWS. While Terraform support many platforms or the language
that both tools used are drastically different. So, Engineer needs to choose carefully on which
tools is better with their skill set. Another limitation is both tools are mostly made for
provisioning infrastructure. It cannot use for the configuration management or application
deployment on their own. As there are many other tools that can help with those tasks.

60

26/07/66

5.2 Overall Conclusion

Table 5.1 Overall Conclusion

Criteria Terraform Cloud Formation

Capability ✓ ✓
Efficiency 3 4

Error Handling 20 18

Rollback Ability 19 18

Remark: The number presented here is the accumulate of the star rating that the author

gave out on Chapter four. The views and opinions expressed in this rating scale are
those of the author and do not necessarily reflect the official rating or
documentation of Terraform and CloudFormation.
✓= Successful  = Unsuccessful

 From Table 5.1, According to the numbers, Cloud Formation is better in terms of
time efficiency. Terraform is better in rollback ability and error handling . For capability both
tools are measured to be equally good as it successful to run every tasks.
 As we have seen, both Cloud Formation and Terraform offer powerful IaC
capabilities, but it is important to consider your workload, team composition, and
infrastructure needs when selecting IaC platform.
 Cloud Formation is a better option if your entire infrastructure is on AWS and
there are no plans to go multi-cloud. If you are new to AWS services, native support
would be beneficial. It is built by AWS and has faster AWS-related updates. It also uses
JSON and YAML, so there is no learning curve as opposed to HCL.
 Terraform is the best option if you are using or planning to use multi -cloud
resources. The modular approach allows you to create reusable templates, which speed
up the configuration process.

The bottom line is this research still cannot be undetermined on what is best
for you, or your organization is depends on the requirements. The researcher recommends
selecting the IaC tools after evaluating your application’s infrastructure strategy.

61

26/07/66

5.3 Suggestions
5.3.1 Try to create more sophisticated infrastructure than 3 tier web application and see

how both tools response.
5.3.2 Use both tools to complement each other’s when building the infrastructure and

see how they fit in with each other’s.
5.3.3 Not just use both tools to build or provisioning the infrastructure but try to use in

the configuration management also. For example, try to deploy application using the tools
and see how they are response.

26/07/66

BIBLIOGRAPHY

63

26/07/66

BIBLIOGRAPHY

1. Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., & Tamburri, D. A. (2017). DevOps:
Introducing Infrastructure-as-Code. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), (pp. 497-498).

2. Brikman, Y. (2019). Terraform: Up & Running: Writing Infrastructure as Code. O'Reilly
Media, Inc.

3. Campbell, B. (2020). The Definitive Guide to AWS Infrastructure Automation: Craft
Infrastructure-as- Code Solutions. Apress.

4. Guerriero, M., Garriga, M., Tamburri, D. A., & Palomba, F. (2019). Adoption, Support, and
Challenges of Infrastructure-as-Code: Insights from Industry. 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (pp. 580-589).

5. Labouardy, M. (2021). Pipeline as Code: Continuous Delivery with Jenkins, Kubernetes,
and Terraform. Manning Publications.

6. Alexander, S. (2019). [Online]. https://www.techtarget.com/searchioperations/-
definition/Terraform.

7. Contino (2022). [Online]. https://www.contino.io/insights/aws-cloudformation.
8. zeroFruit (2022). Hashicorp Plugin System Design and Implementation by zeroFruit

Medium.
9. Murphy, O. (2022). Adoption of Infrastructure as Code (IaC) in Real World; Lessons and

practices from industry. JAMK University of Applied Sciences.
10. Bloom, D. (2017). [Online]. https://www.thegreengrid.org/en/newsroom/blog/software-

development-discipline-reshapes-infrastructure.
11. Taylor, T. (2022). [Online]. https://amazic.com/top-3-open-source-tools-that-enable-

infrastructure-as-code/.
12. Ramamoorthy, C. (2021). [Online]. https://www.linkedin.com/pulse/testing-most-

critical-cog- your-devops-wheel-chandrasekar-ramamoorthy.
13. Mike (2022). [Online]. https://www.morethansap.com/2022/01/24/devops-

infrastructure-as-code-and-sap/.
14. Stella, J. (2021). [Online]. https://www.infoworld.com/article/3634774/how-to-secure-

cloud-infrastructure-across-the-development-lifecycle.html.

https://www.techtarget.com/searchioperations/-
https://www.thegreengrid.org/en/newsroom/blog/software-development-discipline-reshapes-infrastructure
https://www.thegreengrid.org/en/newsroom/blog/software-development-discipline-reshapes-infrastructure
https://amazic.com/top-3-open-source-tools-that-enable-infrastructure-as-code/
https://amazic.com/top-3-open-source-tools-that-enable-infrastructure-as-code/
https://www.linkedin.com/pulse/testing-most-
https://www.morethansap.com/2022/01/24/devops-

26/07/66

APPENDIX

65

26/07/66

APPENDIX A
Result on AWS Console

66

26/07/66

VPC result

Figure A.1 VPC created on AWS

EC2 Result

Figure A.2 Private and Public EC2 instances has been created

Security Group Result

Figure A.3 Security Group has been created for each resource

67

26/07/66

Load Balancer Result

Figure A.4 Load Balancer has been created

RDS Result

Figure A.5 RDS Instance has been created

68

26/07/66

CURRICULUM VITAE

Name Songwut Cotcharat

Education
 ค.ศ. 2004 - BBA, Business Computer, Bangkok University.

Work Experience
 ค.ศ. 2023 - Present, Cloud SRE, Zilo Asia.
 ค.ศ. 2022 - IT Operations Manager, Fujitsu Thailand.
 ค.ศ. 2019 - Head of Technical Support, ThisFish Inc.
 ค.ศ. 2011 - IT Operations Manager, SS&C Technologies.

	Titlepage
	Abstract
	Acknowledgment
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Reference
	Appendix
	Profile

