

Research Report

On

Comparative Study between
Software Product Line and Waterfall Process

By
Waraporn Jirapanthong, Ph.D.

Dhurakij Pundit University

This research has received a research grant from
Dhurakij Pundit University

2011

DPU

รายงานผลการวจัิย

เรื�อง

การศึกษาเชิงเปรียบเทียบระหว่างกระบวนการพัฒนาซอฟต์แวร์

แบบโปรดกัต์ไลน์และแบบนํ'าตก

โดย

ผู้ช่วยศาสตราจารย์ ดร. วราพร จิระพนัธ์ุทอง

รายงานการวจัิยนี'ได้รับทุนอุดหนุนจาก

มหาวทิยาลัยธุรกจิบัณฑิตย์

พ.ศ. 2554

DPU

Research Title : Comparative Study between Software Product Line
 and Waterfall Process
Researcher(s) : Waraporn Jirapanthong
Institute/Publisher : Dhurakij Pundit University
Year of Publication : 2011
Total Pages : 63

บทคัดย่อ

ซอฟตแ์วร์โปรดกัตไ์ลน์ไดรั้บการยอมรับว่าเป็นกระบวนทศัน์สาํคญัทางดา้นวศิวกรรมระบบซอฟต์แวร์

ในช่วงหลายปีทีSผ่านมามีการนาํเสนอระเบียบแบบแผนและวิธีการจาํนวนมากสาํหรับสนบัสนุนการพฒันาระบบ

ซอฟตแ์วร์ทีSมีพื[นฐานการพฒันาแบบโปรดกัตไ์ลน์ อยา่งไรก็ตามการพฒันาแบบโปรดกัตไ์ลน์ยงัคงมีความยุง่ยาก

ในเชิงปฏิบตัิ จึงกลายเป็นคาํถามว่าวิธีการพฒันาระบบซอฟต์แวร์แบบโปรดกัต์ไลน์นั[นก่อให้เกิดผลประโยชน์

และยึดหยุ่นมากกว่าการพฒันาทีSใช้แม่แบบการพฒันาระบบซอฟต์แวร์แบบดั[งเดิมอย่างแม่แบบนํ[าตกหรือไม่

งานวิจยัชิ[นนี[พิจารณาแง่มุมเชิงปริมาณและคุณภาพของการพฒันาซอฟตแ์วร์ทีSไดโ้ดยเปรียบเทียบระหว่างการ

พฒันาโดยประยกุตใ์ชโ้ปรดกัตไ์ลนแ์ละนํ[าตก งานวิจยันี[นาํเสนอการทาํโครงการเชิงศึกษาผ่านกระบวนการแบบ

โปรดกัตไ์ลน์และนํ[าตก มีการสาํรวจและสมัภาษณ์เพืSอวดัความพงึพอใจของผูมี้ส่วนเกีSยวขอ้งในการพฒันาระบบ

ซอฟต์แวร์ มีการวดัเวลาทีSใช้ไปและวดัขอ้ผิดพลาดทีSเกิดขึ[นระหว่างขั[นตอนการพฒันาและบาํรุงรักษาระบบ

ซอฟตแ์วร์ นอกจากนี[งานวิจยัชิ[นนี[ไดอ้ธิบายประสบการณ์และปัญหาทีSเกิดขึ[นของวิศวกรรมความตอ้งการและ

การจดัการความตอ้งการระหว่างการดาํเนินโครงการพฒันาซอฟตแ์วร์แบบโปรดกัตไ์ลน์และแบบเดีSยว

Abstract

 Software product line has been recognised as an important paradigm for software

systems engineering. In the last years, a large number of methodologies and approaches have

been proposed to support the development of software systems based on product line

development. However, its context leads difficulties to software product line engineering in

DPU

practical. It has been quested whether software product line-based approach is more productive

and flexible than traditional software development model i.e. waterfall model. This research thus

examines the qualitative and quantitative aspects of software development which applies software

product line and waterfall. The research presents the study on empirical projects based on

software product line and waterfall processes. In particular, we conduct the survey and interview

to capture the satisfaction of stakeholders and measure the effort spent and errors occurred during

software development and maintenance phases. Moreover, the research describes the experiences

and challenges of requirements engineering and management that arise in the context of industrial

software product line development. It has been derived from the study on empirical projects based

on software product line and single software development.

DPU

Acknowledgement

I am grateful to Dhurakijpundij University for the financial support for this

research. DPU

Declaration

Some of the material in this report has been previously published in the paper:

• Waraporn Jirapanthong, "Comparative Study Between Software Product Line

and Waterfall Process," Journal of Information Science and Technology, Vol.1,

No.1 , pp.1-8.

I grant powers of discretion to Dhurakijpandit University to allow this research to be

copied in whole or in part without further reference to me. This permission covers only

single copies made for study purposes, subject to normal conditions of

acknowledgement.

DPU

Contents

ABSTRACT I

ACKNOWLEDGEMENT II

DECLARATION III

LIST OF FIGURES VII

LIST OF TABLES VIII

CHAPTER I

INTRODUCTION 1

1.1. Research Motivation 1

1.2. Problems Statement 2

1.3. Research Objectives 3

1.4. Scope of Work 3

CHAPTER II

LITERATURE REVIEW 5

2.1. Software Product Line 5

2.1.1. Activities of Software Product Line Development 5

2.2. Framework of Software Product Line Artefacts 8

2.2.1.Use Case Description 8

2.2.2. UML Modeling 8

2.2.3. Feature Modeling 10

2.3. Mapping Different Perspectives between Feature Model and UML
Diagram

11

2.3.1. Commonality 11

2.3.2. Variability 11

2.4. Waterfall Approach 15

DPU

2.4.1. The Stages of The Waterfall Model 17

2.4.2. Implementation with Waterfall Approach 18

2.4.3. Common Errors in Requirements Analysis 18

2.5. Summary 22

CHAPTER III

RESEARCH METHOD 23

3.1. Introduction 23

3.2. Empirical Project Development based on Software Product Line
Process

23

3.3. Empirical Project Development based on Conventional Software
Process

25

3.4. New Requirements Management on Software Products 26

3.5. Summary 28

CHAPTER IV

EXPERIMENTS AND RESULTS 29

4.1. Introduction to Experiments 29

4.2. The Development based on Software Product Line Approach 31

4.2.1. Scenarios of Software Project Development based on Software
Product Line Approach

33

4.2.2. Development Phase 36

4.2.3. Maintenance Phase 39

4.3. The Development based on Waterfall Approach 40

4.3.1. Scenarios of Software Project Development based on Waterfall
Approach

41

4.3.2. Development Phase 42

4.3.3. Maintenance Phase 45

4.4. Experience on Requirements Engineering and Change Management 45

4.4.1. Experience on Requirement Development for Software Projects
based on Software Product Line and Waterfall Approach

48

4.4.2. Experience on Change Management for Software Projects based
on Software Product Line and Waterfall Approach

50

DPU

4.5. Analysis of Experiment Results 51

4.5.1. Qualitative Measurement 51

4.5.2. Quantitative Measurement 52

4.6. Summary 54

CHAPTER V

CONCLUSIONS AND FUTURE WORK 55

5.1. Conclusions 55

5.2. Future Work 58

REFERENCES 60

BIOGRAPHY 63

DPU

List of Figures

FIGURE 2.1: representing commonality in a feature model and UML
class diagram

12

FIGURE 2.2: representing variability in a feature model and UML class
diagram

13

FIGURE 2.3: representing variability in a feature model and UML class
diagram

15

FIGURE 2.4: General overview of waterfall model 16

FIGURE 3.1: Software Produce Line Process 24

FIGURE 3.2: Waterfall Process 25

FIGURE 3.3: Maintenance on a product member of software product line 27

FIGURE 3.4. Maintenance on a software product 27

FIGURE 4.1: Qualitative measurement 52

DPU

List of Tables

TABLE 2.1: Software artefacts created during software product line
engineering

7

TABLE 4.1: shows the functionalities of each software product 31

TABLE 4.2: Summary of number of document types used in the case
study, number of main elements in the documents, and size
of the documents

38

TABLE 4.3: Summary of document types, number of documents, element
type, and number of elements in the documents, which are
created for software project 1(PM_1)

43

TABLE 4.4: Summary of document types, number of documents, element
type, and number of elements in the documents, which are
created for software project 2(PM_2)

44

TABLE 4.5: Summary of document types, number of documents, element
type, and number of elements in the documents, which are
created for software project 3(PM_3)

44

TABLE 4.6: Common artefacts for modeling requirements 46

TABLE 4.7: Techniques for eliciting requirements 49

TABLE 4.8: shows the effort and errors during development phase 53

TABLE 4.9: shows the effort and errors during maintenance phase 54

DPU

Chapter I Introduction

1.1 Research Motivation

 Nowadays, many software development projects focus on customer satisfaction,

quick adaptaion to changes, and flexibility. Therefore, software product line development

has become popular because it responds well to frequent changes in user requirements.

Software product line shares a common set of features and are developed based on the

reuse of core assets have been recognised as an important paradigm for software systems

engineering. Recently, a large number of software systems are being developed and

deployed in this way in order to reduce cost, effort, and time during system development.

Various methodologies and approaches have been proposed to support the development

of software systems based on software product line development.

Although software product line development is criticized as having difficulties, it

has been more popular. Some difficulties are concerned with the

(a) necessity of having a basic understanding of the variability consequences

during the different development phases of software products,

(b) necessity of establishing relationships between product members and product

line artefacts, and relationships between product members artefacts,

(c) poor support for capturing, designing, and representing requirements at the

level of product line and the level of specific product members,

(d) poor support for handling complex relations among product members, and

(e) poor support for maintaining information about the development process.

This research, thus, examines the qualitative and quantitative aspects of software

development using software product line, in comparison with those using a traditional

software model, waterfall model. In particular, the study used both qualitative aspect that

were collected from surveys and interviews of development and maintenance team and

DPU

2

quantitative aspect that were measured from effort spent during the development and

maintenance phases.

Additionally, the research is concerned with requirements management regarding

both software development approaches. Requirements management is concerned with

understanding the goals of the organisation and its customers and the transformation of

these goals into potential functions and constraints applicable to the development and

evolution of products and services. It involves understanding the relationship between

goals, functions and constraints in terms of the specification of products, including

systems behaviour, and service definition. The goals represent why a certain extent

relates and what are in development terms. The specification provides the basis for

analysing requirements, validating what stakeholders want, defining what needs to be

delivered, and verifying the resultant developed product or service. Requirements

management aims to establish a common understanding between the customers and

stakeholders and the project team that will be addressing the requirements at an early

stage in the project life cycle and maintain control by establishing suitable baselines for

both development and management use.

This research thus describes the experiences and challenges of requirements

engineering and management for software product line, in comparison with single

software systems.

1.2 Problems Statement

 The problems could be classified into two categories as follows:

 1. Software product line development becomes more being concerned regarding

its difficulties.

 2. Software developers lack of tacit knowledge of applying software product line

approach in practical.

DPU

3

1.3 Research Objectives

 The objectives of this research project are as follows:

1. To investigate the strengths and weakness of two software development

approaches i.e. software product line and waterfall model;

2. To experience requirements engineering process in both software product

line and waterfall model; and

3. To improve the performance of software system development.

1.4 Scope of Work

1. In this research, a team of software developers is set up. It includes a

software engineer, system analyst, and programmers.

2. Software engineer and system analyst have well-experience in object-oriented

analysis and design. Particularly, they design a system based on object-

oriented techniques e.g. use case diagram, UML diagrams.

3. Programmers have well-experience in object-oriented programming, e.g. in

java language.

4. In this research, we establish a case study of software development that

encompasses three software projects.

5. Those software projects have some similar and different requirements.

6. The team of software developers develops the software projects by applying

with both software development approaches i.e. software product line and

waterfall model.

7. This research is based on object-oriented methodologies.

The remainder of this report is organized in five chapters as described below:

Chapter 2 presents the review of software product line, particularly activities of software

product line development, framework of software product line artefacts, mapping

DPU

4

different perspectives between feature model and UML diagrams, and the review of

waterfall approach.

Chapter 3 describes the research method applied in the research.

Chapter 4 contains a description of the experiments and analyses the experiences on the

case study.

Chapter 5 discusses the conclusions and directions for future work. DPU

Chapter II Literature Review

This chapter presents the review of software product line, particularly activities of

software product line development, framework of software product line artefacts,

mapping different perspectives between feature model and UML diagrams, and the

review of waterfall approach.

2.1. Software Product Line

Software product line is originally introduced to serve the reuse practice in an

organization having a large number of products, which drives issues such as highly

expensive, complex, and tedious tasks. The idea of product line was motivated by the

need to systematize a number of products more effectively and the fact that these

products have a certain set of common and special functionalities. For example, a

mobile-phone company has created a mobile-phone family that contains a set of mobile-

phones. Some lower end mobile-phones have similar basic functionalities but different

hardware capacities to offer competitive price. Region-based mobile-phones are designed

for different transmission and signaling standards, depending on regional diversity;

thereby, the company provides different functionalities of mobile phones to support

different regions.

2.1.1. Activities of Software Product Line Development

The main activities of software product line development i.e.

(a) domain engineering, and

(b) application engineering.

DPU

6

Domain engineering is a systematic process for the creation of the core assets [Northrop,

L. M. 2002]. There are three steps for domain engineering:

(i) domain analysis is the process of identifying, collecting, organizing and

representing the relevant information in a domain, based upon the study of

existing systems and their developing histories, knowledge captured from

domain experts, underlying theory, and emerging technology within a domain

[Kang, K., at el. 1990];

(ii) domain design is the process of developing a design model from the products

of domain analysis and the knowledge gained from the study of software

requirements or design reuse and generic architectures [Garlan, D. and M.

Shaw. 1993.]; and

(iii) domain implementation is the process of identifying reusable components

based on the domain model and generic architecture [Clements, P., and L.

Northrop. 2004].

Application engineering is a systematic process for the creation of a product member

from the software artefacts created during the domain engineering [Northrop, L. M.

2002]. The application engineering process is composed of three steps:

(i) requirements engineering focuses on identifying, collecting, organizing and

representing requirements of a product member. The major difference

between requirements engineering of an individual product and a product

member is that stakeholders do not only focus on the specific product but

also on the scope of product family;

(ii) design analysis is to analyse and design the architecture for a product

member. Design analysis in application engineering must be consistent with

the concept of design analysis in domain engineering; and

(iii) integration and testing is a process of taking reusable components then

putting them together to build a complete system, and of testing if the system

is working appropriately.

The activities in domain engineering involve the creation of core assets which are

expected to be used for all product members. As the activities in application engineering

DPU

7

involve the reuse of the software artefacts to create a product member. As shown in

Table 2.1, different types of software artefacts are created during the activities of

software product line development. For example, reference requirements are created

during domain analysis and represented for the requirements of a product line. Software

product line architecture is created during domain design and represented for the

architecture of the software product line while the architecture of a specific product is

generated during design analysis of application engineering. As shown in Table 2.1,

software artefacts are generated during the development of software product line

systems.

 Many methodologies and approaches introduce methodical support to the

activities of software product line engineering. However, software product line

developers suffer from some of the following shortcomings:

(i) uncontrolled growth of variety;

(ii) difficulty of defining commonality and variability;

(iii) difficulty of documenting management;

(iv) confliction and dependency between artefacts in product line systems;

(v) difficulty to specialise variability.

Table 2.1: Software artefacts created during software product line engineering
Software artefact Activity Description

Reference
requirements

Domain analysis Defining the products and their
requirements of a family.

Software product line
architecture

Domain design Representing the architecture of software
product line.

Reusable software
components

Domain
implementation

Being integrated with other reusable
software components for a particular
product member.

Specific-product
requirements

Requirements
Engineering

Specifying the requirements of a
particular product member based on the
reference requirements

Specific-product
architecture

Design analysis Representing the architecture of a
particular product member based on the
software product line architecture

Specific-product
configuration and
particular product
member

Integration
and testing

Integrated and configured reusable
components that are conducted to be a
particular product member

DPU

8

2.2. FRAMEWORK OF SOFTWARE PRODUCT LINE
ARTEFACTS

In this section, the framework of software product line artefacts is presented.

2.2.1. Use Case Description

Many approaches proposed to apply use case description in the activities of software

product line development. Moreover, we found some approaches that extend use case

description for software product line engineering. In [Fantechi, A., at el. 2004], the

authors proposed to express the requirements of product members of a product family

by extending the use case definition given by Cockburn. The variability is expressed in

use cases by using special tags. The tags indicate the requirements of a product family

that need to be specialised for a product member. They proposed three types of tag:

(i) alternative tag, which specifies variable requirements with a predefined set of

requirement variants;

(ii) parametric tag, which requires specifying of parameters to fill in a

requirement for a product member, and

(iii) optional tag, which represents an optional requirement which can be

instantiated. In [John, I., and D. Muthig. 2002], the authors extended use case

specification by adding constructs for representing variant points for variable

requirements and applied the decision model to express the relationships and

dependencies between the variable requirements.

2.2.2. UML Modeling

Many existing approaches and methods apply UML modelling in software product line

engineering. Some approaches such as [Clauss, M. 2001][Gomaa, H., and M. E. Shin.

2004] are proposed to adapt UML diagrams for modeling software product line. Gomaa

[Gomaa, H., and M. E. Shin. 2004] proposed Product Line UML-based Software

engineering (PLUS) by using UML modeling for the development of software product

line. The author applied UML diagrams to represent the commonality and variability of

software product line. In [Clauss, M. 2001], they use a UML class diagram to represent

DPU

9

software product line architecture. They define three types of stereotypes for

representing variability in a product family:

(i) variationPoint, which is used for a generalized class;

(ii) variant, which is used for a specialized class; and

(iii) optional, which is used for a class.

They applied two types of relationships to assist representation of variability:

(i) generalization/specialization, which associates between classes typed of

variationPoint and variant; and

(ii) association with cardinality 0...1, which associates between any class and a

class typed of optional.

Some work proposed the combination of patterns and discriminants to support

representing of commonality and variability in software product line architecture. A

pattern is represented by class and object diagrams and a discriminant is a feature

representing a requirement that differentiates a system from another. They defined three

types of discriminant:

(i) single discriminant, which represents a set of mutually exclusive features;

(ii) multiple discriminants, which represent a set of optional features which are

not mutually exclusive; and

(iii) option discriminant, which is a single optional feature that may or may not be

used.

The single discriminant represents an inheritance hierarchy that consists of a generic class

called base class and a set of subclasses called realm. A realm is used to represent

variability in a product family. For the single discriminant, a product member can be

specified with a subclass in a realm. The multiple discriminants also represent an

inheritance hierarchy that consists of a base class and realm. However, a product

member can be specified with one or more subclasses in a realm. The optional

discriminant is represented by two classes with a 0..1 association. A product member,

which has been specified with a class, may or may not be specified with another class.

DPU

10

2.2.3. Feature Modeling

This technique was initially proposed in FODA [Kang, K., at el. 1990] to assist the

activity of domain analysis. Many approaches apply and extend the definition of a feature

model to support the development of software product line. However, feature modelling

has not yet been standardised comparing with UML modelling which standard has been

known. We describe below different aspects of feature modeling technique that are

applied in existing approaches i.e.

(i) types of a feature in a feature model,

(ii) notation, and

(iii) relationships between features in a feature model.

In general, there are three types of feature: mandatory feature [Bosch, J. 1998][Clements,

P., and L. Northrop. 2004][Griss, M. L., at el. 1998][Kang, K., at el. 1990][Kang, K. C., at

el. 1998] is compulsory for product members of a family; optional feature [Bosch, J.

1998][Clements, P., and L. Northrop. 2004][Griss, M. L., at el. 1998][Kang, K., at el.

1990][Kang, K. C., at el. 1998][Svahnberg, M., at el. 2001] may exist in a specific product

member or not; and alternative feature [Bosch, J. 1998][Clements, P., and L. Northrop.

2004][Kang, K., at el. 1990][Kang, K. C., at el. 1998] or variant feature [Griss, M. L., at

el. 1998], is a possible feature that can be selected for a specific product member.

Moreover, [Svahnberg, M., at el. 2001] define an extra type of feature external feature as

a requirement not available in the system but need to be satisfied by the external system.

A feature may be depicted as a round or a rectangle with its name inside. Some

approaches have applied UML notation for expressing features [Griss, M. L., at el. 1998].

Moreover, different types of a feature i.e. mandatory, optional, and alternative are

represented in different notations.

Regarding the relationships between features in a feature model, ideally, features are

atomic units that can be put together in a product without difficulty. However, features

are generally not independent and several types of relations can exist between them.

According to [Gibson, P., at el. 1997], feature interaction is defined as a characteristic of

a system whose complete behaviour does not satisfy the separate specifications of all its

DPU

11

features. The types of relationships express the rules of feature interaction. These

relationships are considered for selecting features. They represent which features must be

selected together and which features must not.

A feature model becomes a powerful, practical, extensible, and simple technique in

domain analysis process. On the other hand, UML diagrams, particularly class diagram,

has been applied in domain design process due to its maturity, compliance; and

practicality. We investigate how to map a feature model into UML class diagram as the

following section.

2.3. MAPPING DIFFERENT PERSPECTIVES BETWEEN
FEATURE MODEL AND UML DIAGRAM

According to several different perspectives of a software product line, the commonality

and variability of the software product line are represented in multi-viewpoints. We focus

on a feature model and UML diagram. We also investigate how the commonality and

variability are captured by using feature-based and UML components.

2.3.1. Commonality

The commonality specified in a feature model is represented by mandatory features while

the commonality specified in a UML class diagram is represented by a parent class having

a composition association with child class. As shown in Figure 2.1, mandatory features

top, body, door, and window must be specified in any car while class car is composed of

classes top, body, door, and window.

2.3.2. Variability

As the variability specified in a feature model is represented by alternative and optional

features, there are several possible ways to represent the variability in a UML class

diagram. We describe below the mapping between optional and alternative features of a

feature model into an UML class diagram.

DPU

12

Figure 2.1: representing commonality in a feature model and UML class diagram

(a)

DPU

13

(b)

(c)

(d)

Figure 2.2: representing variability in a feature model and UML class diagram

Optional feature:

In a UML class diagram, it can be specified by a parent class having a binary association

with another class with cardinality (0..1). As shown in Figure 2.2(a), an optional features

sunroof may be chosen for a specific car while an instance of class car may be associated

with an instance of class sunroof

DPU

14

Alternative feature:

It can be differently represented in a UML class diagram.

(i) one of alternative features must be chosen for a specific product member.

There are two possible ways to represent this kind of variability in a UML

class diagram. Firstly, as shown in Figure 2.2(b), alternative features 3-door

and 4-door can be specified for a particular car while a class car can be

specialized as either a class 3-door or class 4-door. Secondly, alternative features

can be captured with a mutually exclusive association in UML diagram. As

shown in Figure 2.2(c), a console can be either analogue or digital display.

(ii) one or more of alternative features can be chosen for a specific product

member. As shown in Figure 2.2(d), a particular car can have either feature

air-conditioner or heater, or both while a class car can be composed of a class air-

conditioner or class heater, or of both classes.

(iii) Zero or more of alternative features can be chosen for a specific product

member. There are two possible ways to represent this kind of variability in a

UML class diagram. Firstly, classes and associations in a UML class diagram

which capture this kind of variability can be represented by using a binary

association with cardinality (0..1). Secondly, it is represented by a parent class

having a composition association with children classes with cardinality (0..1).

As shown in Figure 2.3, optional features LCD screen, CD player, cassette player,

and massage seat may be specified in any car while class car may be composed

of classes LCD screen, CD player, cassette player, and massage seat.

DPU

15

Figure 2.3: representing variability in a feature model and UML class diagram

In addition, it is possible that a feature is transformed to be an operation or attribute of a

class in a class diagram. For example, a feature colour appears as an attribute of a class

body. Moreover, a feature can appear as a composition of class(es), attribute(s), and/or

operation(s). For example, a feature maximum_speed can be captured in an UML class

diagram by an attribute accelerating_power and operation speed. The two aspects is a

composite representation of a feature maximum_speed.

2.4. Waterfall Approach

There are various software development approaches defined and designed which are

used/employed during development process of software, these approaches are also

referred as "Software Development Process Models". Each process model follows a

particular life cycle in order to ensure success in process of software development.

Waterfall approach was the first process model to be introduced and followed widely in

Software Engineering to ensure success of the project. In "The Waterfall" approach, the

whole process of software development is divided into separate process phases.

DPU

16

The phases in Waterfall model are:

(i) Requirement Specifications phase,

(ii) Software Design,

(iii) Implementation and

(iv) Testing & Maintenance.

All these phases are cascaded to each other so that second phase is started as and when

defined set of goals are achieved for first phase and it is signed off, so the name

"Waterfall Model". All the methods and processes undertaken in Waterfall Model are

more visible.

Figure 2.4: General overview of waterfall model

DPU

17

2.4.1. The Stages of "The Waterfall Model"

I. Requirement Analysis & Definition:

All possible requirements of the system to be developed are captured in this phase.

Requirements are set of functionalities and constraints that the end-user, who will be

using the system, expects from the system. The requirements are gathered from the end-

user by consultation, these requirements are analyzed for their validity and the possibility

of incorporating the requirements in the system to be developed is also studied. Finally, a

Requirement Specification document is created which serves the purpose of guideline for

the next phase of the model.

II. System & Software Design:

Before a starting for actual coding, it is highly important to understand what we are going

to create and what it should look like. The requirement specifications from first phase are

studied in this phase and system design is prepared. System Design helps in specifying

hardware and system requirements and also helps in defining overall system architecture.

The system design specifications serve as input for the next phase of the model.

III. Implementation & Unit Testing:

On receiving system design documents, the work is divided in modules/units and actual

coding is started. The system is first developed in small programs called units, which are

integrated in the next phase. Each unit is developed and tested for its functionality; this is

referred to as Unit Testing. Unit testing mainly verifies if the modules/units meet their

specifications.

IV. Integration & System Testing:

As specified above, the system is first divided in units which are developed and tested for

their functionalities. These units are integrated into a complete system during Integration

phase and tested to check if all modules/units coordinate between each other and the

system as a whole behaves as per the specifications. After successfully testing the

software, it is delivered to the customer.

DPU

18

V. Operations & Maintenance:

This phase of "The Waterfall Model" is virtually never ending phase. Generally, problems

with the system developed, which are not found during the development life cycle, come

up after its practical use starts, so the issues related to the system are solved after

deployment of the system. Not all the problems come in picture directly but they arise

time to time and needs to be solved; hence this process is referred as Maintenance.

2.4.2. Implementation with Waterfall Approach

The main characteristic of waterfall development is that it allows for departmentalization

and managerial control. A schedule can be set with deadlines for each stage of

development and a product can proceed through the development process like a car in a

carwash, and theoretically, be delivered on time. Development moves from concept,

through design, implementation, testing, installation, troubleshooting, and ends up at

operation and maintenance. Each phase of development proceeds in strict order, without

any overlapping or iterative steps.

However, waterfall development is that it does not allow for much reflection or revision.

Once an application is in the testing stage, it is very difficult to go back and change

something that was not well-thought out in the concept stage. Alternatives to the

waterfall model include joint application development (JAD), rapid application

development (RAD), synch and stabilize, build and fix, and the spiral model.

2.4.3. Common Errors in Requirements Analysis

In the traditional waterfall model of software development, the first phase of

requirements analysis is also the most important one. This is the phase which involves

gathering information about the customer's needs and defining, in the clearest possible

terms, the problem that the product is expected to solve.

DPU

19

This analysis includes understanding the customer's business context and constraints, the

functions the product must perform, the performance levels it must adhere to, and the

external systems it must be compatible with. Techniques used to obtain this

understanding include customer interviews, use cases, and "shopping lists" of software

features. The results of the analysis are typically captured in a formal requirements

specification, which serves as input to the next step.

In reality, there are a number of problems with this theoretical model, and these can

cause delays and knock-on errors in the rest of the process. This article discusses some of

the more common problems that project managers experience during this phase, and

suggests possible solutions.

Problem 1: Customers do not really know what they want

Possibly the most common problem in the requirements analysis phase is that customers

have only a vague idea of what they need, and a software engineer should ask the right

questions and perform the analysis necessary to turn this amorphous vision into a

formally-documented software requirements specification that can, in turn, be used as

the basis for both a project plan and an engineering architecture.

To solve this problem, it is suggested that a software engineer should:

• Ensure that the software engineer spend sufficient time at the start of the project

on understanding the objectives, deliverables and scope of the project.

• Make visible any assumptions that the customer is using, and critically evaluate

both the likely end-user benefits and risks of the project.

• Attempt to write a concrete vision statement for the project, which encompasses

both the specific functions or user benefits it provides and the overall business

problem it is expected to solve.

• Get a customer to read, think about and sign off on the completed software

requirements specification, to align expectations and ensure that both parties

have a clear understanding of the deliverable.

DPU

20

Problem 2: Requirements change during the course of the project

The second most common problem with software projects is that the requirements

defined in the first phase change as the project progresses. This may occur because as

development progresses and prototypes are developed, customers are able to more

clearly see problems with the original plan and make necessary course corrections; it may

also occur because changes in the external environment require reshaping of the original

business problem and hence necessitates a different solution than the one originally

proposed.

Good project managers are aware of these possibilities and typically already have backup

plans in place to deal with these changes.

To solve this problem, it is suggested that a software engineer should:

• Have a clearly defined process for receiving, analyzing and incorporating change

requests, and make a customer aware of his/her entry point into this process.

• Set milestones for each development phase beyond which certain changes are not

permissible -- for example, disallowing major changes once a module reaches 75

percent completion.

• Ensure that change requests and approvals are clearly communicated to all

stakeholders, together with their rationale, and that the master project plan is

updated accordingly.

Problem 3: Customers have unreasonable timelines

It is quite common to hear a customer say something like "it is an emergency job and we

need this project completed in X weeks". A common mistake is to agree to such

timelines before actually performing a detailed analysis and understanding both of the

scope of the project and the resources necessary to execute it. In accepting an

unreasonable timeline without discussion, in fact, it is quite likely that the project will

either get delayed because it was not possible to execute it in time. Or the project will

suffer from quality defects because it was rushed through without proper inspection.

DPU

21

To solve this problem, it is suggested that a software engineer should:

• Convert the software requirements specification into a project plan, detailing

tasks and resources needed at each stage and modeling best-case, middle-case and

worst-case scenarios.

• Ensure that the project plan takes account of available resource constraints and

keeps sufficient time for testing and quality inspection.

• Enter into a conversation about deadlines with a customer, using the figures in a

draft plan as supporting evidence for statements. Assuming that a plan is

reasonable, it's quite likely that the ensuing negotiation will be both productive

and result in a favorable outcome for both parties.

Problem 4: Communication gaps exist between customers, engineers and project

managers

Often, customers and engineers fail to communicate clearly with each other because they

come from different worlds and do not understand technical terms in the same way. This

can lead to confusion and severe miscommunication, and an important task of a project

manager, especially during the requirements analysis phase, is to ensure that both parties

have a precise understanding of the deliverable and the tasks needed to achieve it.

To solve this problem, it is suggested that a software engineer should:

• Take notes at every meeting and disseminate these throughout the project team.

• Be consistent in the use of words. Make a glossary of the terms that are used

right at the start, ensure all stakeholders have a copy, and stick to them

consistently.

Problem 5: The development team does not understand the politics of the

customer's organization

The scholars Bolman and Deal suggest that an effective manager is one who views the

organization as a "contested arena" and understands the importance of power, conflict,

negotiation and coalitions. Such a manager is not only skilled at operational and

functional tasks, but he or she also understands the importance of framing agendas for

DPU

22

common purposes, building coalitions that are united in their perspective, and

persuading resistant managers of the validity of a particular position.

These skills are critical when dealing with large projects in large organizations, as

information is often fragmented and requirements analysis is hence stymied by problems

of trust, internal conflicts of interest and information inefficiencies.

To solve this problem, it is suggested that a software engineer should:

• Review existing network and identify both the information needed and who is

likely to have it.

• Cultivate allies, build relationships and think systematically about the social

capital in the organization.

• Persuade opponents within a customer's organization by framing issues in a way

that is relevant to their own experience.

• Use initial points of access/leverage to move an agenda forward.

2.5. Summary

This chapter has provided background of software product line and waterfall approach.

The framework of software product line artefacts is presented and mapping different

perspectives between feature model and UML diagrams is also discussed.

DPU

23

Chapter III Research Method

This chapter presents the research method applied in the research. The goal of this

research is described in Section 3.1. and the description of empirical project development

based on software product line process and waterfall process are provided in Sections

3.2. and 3.3. Moreover, the case of new requirements management is described in

Section 3.4.

3.1. Introduction

The goal of this research is to compare the qualitative and quantitative aspects between

software product line -based and waterfall-based development and maintenance. To

achieve the goal, this research conducted an experiment involving three software

development projects that have some similar and different requirements. A team of

developers was required to achieve the software development projects two times:

(i) to follow the software product line process, and

(ii) to follow the conventional software process, specifically waterfall process.

3.2. Empirical Project Development based on Software Product
Line Process

The project started with developers being trained about software product line process

and its techniques. These developers were then tested for their understanding of software

product line practices by using questionnaires. Those who passed the test were assumed

to be ready to implement projects using software product line. At the beginning of a

project the developers need to take several days to envision the high-level requirements

and to understand the scope of the release. The goal of this activity is to find what the

project is all about, not to document in detail. The developers then started developing a

set of three projects by following the software product line practices. They studied and

analyzed all projects together and produced the software artefacts:

DPU

24

(i) reference requirements;

(ii) software product line architecture; and

(iii) software components.

Figure 3.1. Software Produce Line Process

The artefacts were checked before submitting to the domain repository to be ready for

application engineering process. Next, three software products were created based on the

domain artefacts (i.e. reference requirements, software product line architecture, and

software components). Before the software was accepted by customers, we ran test cases

on the software. When the software passed all test cases, the projects are completed. The

whole software product line process is shown in Figure 3.1.

We then calculated and analyzed the qualitative and quantitative aspects of domain

engineering process and application engineering process for each project. Then we

checked the developers conform to software product line practices.

Domain
Analysis

Domain
Design

Domain
Implementation

Domain Engineering

Details of three
projects

Reference
requirements

Software product
line architecture

Software
components

Domain Artefacts

Requirements
Engineering

Design
Analysis

Integration and
Testing

Application Engineering

Single
software
product

DPU

25

3.3. Empirical Project Development based on Conventional
Software Process

Figure 3.2. Waterfall Process

For each project, developers divided their work based on their roles. Firstly, the

developers summarized all requirements from customers and produced a user

requirement specification. Next, they designed the system architecture, components and

data models. They applied use case descriptions and diagrams to explain the

requirements of each single software product. In addition, they also created class

diagrams, sequence diagrams and activity diagrams of the entire project in this stage.

They implemented the software by following the documents and used unit tests regularly.

When completing all the components, the developers integrated all the pieces together

and began an integration test. Finally, the developers delivered the customers the

complete software when all of these stages finished. The artefacts that are checked and

submitted to the repository are:

Requirements
Definition

System &
Software Design

Implementation

Details of a
single project

User
Requirements
Specifications

Design
Models

Source
Code

Operation &
Maintenance

Integration and
Testing

Single software
product

Testing
Documents

DPU

26

(i) use case descriptions;

(ii) use case diagrams;

(iii) class diagrams;

(iv) sequence diagrams;

(v) activity diagrams;

(vi) source code;

(vii) testing documents; and

(viii) coding standard and technical documents.

The project that used waterfall-based model produced more artefacts than that of

software product line process does. However, the development time of the waterfall-

based project is greater than that of software product line. All the end of this step, we

calculated and analyzed the qualitative and quantitative aspects in each project.

3.4. New Requirements Management on Software Products

In this phase, the team of developers was given new requirements on the systems. Many

factors lead into this scenario, for example, customers require new functionality to be

done in a design part of a software product.

DPU

27

Figure 3.3. Maintenance on a product member of software product line

For the software product line-based systems, it is supposed the situation in which the

organisation has established a software product line for their software systems with

software product members. Those are created from the development phase. And the

new requirements are done to a product member. Therefore, it is necessary to evaluate

how these new requirements will affect the other artefacts of the product member and if

these new requirements also affect other product members in the software product line

that may be related to the new requirements. The artefacts are inspected and determined

if they are related to the new requirements as shown in Figure 3.3.

Figure 3.4. Maintenance on a software product

Details of Changes
on PM_1

Reference
requirements

Software product
line architecture

Software
component

Domain Artefacts

PM_3

PM_1

PM_2

Details of Changes
on PM_1 PM_1

DPU

28

For the waterfall-based systems, it is supposed the situation in which the organisation has

individually developed a set of software systems. Those are created from the

development phase. And the new requirements are done to a software product.

Therefore, it is necessary to evaluate only how these new requirements will affect any

artefacts of the software product as shown in Figure 3.4.

3.5. Summary

This chapter has described the research method that is applied to the research. In

next chapter, we present the experiments developed to demonstrate the work and

analyses the experimental results of applying with both software development

approaches.

DPU

29

Chapter IV Experiments and Results

This chapter provides the description of the experiments concerning with two software

development approaches. The case study encompassing three software projects are

presented. The motivation of different scenarios of software projects is described. Also,

the experience and results of the case study are described.

4.1. Introduction to Experiments

The developers were requested to develop three software products, namely PM_1,

PM_2, and PM_3. The list of functionalities and specifications of each software product

is shown in Table 1. We describe below the details of each product.

PM_1

The software product PM_1 is expected to be a software system which supports an

accounting department. And users prefer informative user interface. As shown in Table

4.1, the software product PM_1 has some basic functionalities:

(a) processing accounting data,

(b) generating reports,

(c) managing log files, and

(d) displaying time and date.

Additionally, it has some advanced functionalities:

(a) access Internet which allows a user to browse and download data through the

Internet, and

(b) email system which supports the email.

DPU

30

PM_2

The software product PM_2 supports work related to accounting and offers a simple

design and is targeted for users who are not familiar using a computer. The software

product PM_2 has only basic functionalities:

(a) processing accounting data,

(b) generating reports,

(c) managing log files, and

(d) displaying time and date.

PM_3

The target customers of the software product PM_3 are users who work via the Internet.

The system supports web-based environment. As shown in Table 4.1, the software

product PM_3 has some basic functionalities:

(a) processing accounting data,

(b) generating reports,

(c) managing log files, and

(d) displaying time and date.

In addition, PM_3 offers advanced functionalities:

(a) access Internet which allows a user to browse and download data,

(b) email system which supports the email,

(c) send and receive text messages, and

(d) send and receive multimedia messages.

DPU

31

Table 4.1 shows the functionalities of each software product

Functionality PM_1 PM_2 PM_3

F1 X X X

F2 X X X

F3 X X X

F4 X X X

F5 X X

F6 X X

F7 X X

F8 X

F1: Processing accounting data

F2: Generating a report

F3: Managing log files

F4: Displaying time and date

F5: Enabling access the Internet

F6: Enabling emailing

F7: Sending and receiving text messages

F8: Sending and receiving multimedia message

Although the software products have some similar functionalities, the user requirements

on each functionality are different. For example, the user interface, the template of

report, and the details of log files. We firstly developed the software products, PM_1,

PM_2, and PM_3, by applying software product line approach, and we then developed

the software products by applying waterfall approaches. The details of development are

described in the following sections.

4.2. The Development based on Software Product Line Approach

As described in Section 4.1., we applied software product line approach to develop the

software products. According to the approach, the software products are recognized as

DPU

32

software product members and the software product line architecture is created to

support the members. Those software product members provide some similar and

different functionalities and each one’s functionalities are shown in Table 4.1.

Additionally, as described in chapter 2, there are many activities and difficulties

associated with software product line engineering. Moreover, as proposed in [Krueger,

C.W.], organisations can develop software product line systems in three different ways:

(a) proactive, when an organisation decides to analyse, design, and implement a line

of products prior to the creation of individual product members;

(b) reactive, when an organisation enlarges the software product line system in an

incremental way based on the demand of new product members or new

requirements for existing products; and

(c) extractive, when an organisation creates a product line based on existing product

members by identifying and using common and variable aspects of these

products.

These approaches are not mutually exclusive and can be used in combination. For

instance, it is possible to have a software product line system initially created in an

extractive way to be incrementally enlarged over time by using a reactive approach. In

addition, various stakeholders may be involved in the product line development process

ranging from market researchers, to product managers, requirement engineers, product-

line engineers, software analysts, and software developers. These stakeholders contribute

in different ways to software product line engineering, have distinct perspectives of the

system, and have distinct interests in different aspects of the product line. For example, a

market researcher may be interested in the requirements and features of a new product

member to be developed, while a software developer may be interested in the design and

implementation aspects of this new product member. Therefore, the stakeholders would

be interested in different types of documents and traceability relations that could assist

them in their various tasks during system development.

DPU

33

In this research, we have conducted sets of experiments related to four different

scenarios concerned with software product line engineering. More specifically, these

scenarios include

(a) the creation of software product line,

(b) the creation of a new product member for an existing product line,

(c) changes to a product member in a product line system, and

(d) changes at the product line level.

These scenarios have been chosen since they illustrate the different ways in which

organisations can develop software product line systems, as discussed above. For each of

these scenarios we have identified the stakeholders involved in the process and the types

of documents that are related to the scenarios.

4.2.1. Scenarios of Software Project Development based on
Software Product Line Approach

We describe below each of the scenarios.

Scenario 1: Creation of a software product line

In this case, the stakeholders involved in this scenario are product managers that identify

which aspects of the product members should be part of the software product line; and

product line engineers, software analysts, and software developers that design and

develop the documents at the product line level.

For this scenario, suppose the situation in which an organisation has no software product

line and would like to create a product line that composes three members. In this case, all

the domain analysis and design models of product members PM_1, PM_2, and PM_3

need to be compared in order to assist with identification of the information represented

at the product line level.

DPU

34

Scenario 2: Creation of a new product member for an existing product line

This situation occurs when an organisation wants to enlarge its system and creates a new

product member. In this case, traceability relations can be used to support the evolution

of software systems and reuse of existing parts of the system. The stakeholders involved

in this scenario are

(a) market researchers that are responsible for identifying the feasibility of

creating a new product and the features that this new product should include

from a commercial point-of-view;

(b) requirements engineers that specify the requirements of the new product;

(c) product line engineers that identify which aspects in the product line level are

related to the new product;

(d) software analysts that analyse existing product members and identify the

commonality and differences between existing product members and the new

product; and

(e) software developers that design the new product by reusing parts of existing

product members and specifying new aspects of the product being developed.

For this scenario, suppose the situation in which the software product line in an

organization contains product member PM_2 and the organization wants to develop

product member PM_1 from our case study. Consider that the requirements of PM_1

have been specified in four different use cases, as shown in Table 4.2. In order to be able

to identify the similarities and differences between PM_1 and PM_2, the parts of PM_1

that can be reused from PM_2, and the parts of PM_1 that need to be developed, it is

necessary to compare various documents including product line feature model, use cases

of PM_1 and PM_2, and class, sequence, and statechart diagrams of PM_2. The types of

documents to be compared and the relevant traceability relations associated with these

documents.

Then, the set of use cases of PM_1 and PM_2 need to be compared with the feature

model of the software product line in order to support the identification of similarities

and differences between the use cases of PM_1 and PM_2. In addition, all class,

sequence, and statechart diagrams of PM_2 are compared with the use cases of PM_1 to

DPU

35

assist with the identification of which elements of PM_2 design models can be reused. It

is also necessary to compare all class, sequence, and statechart diagrams of PM_2 with

the use cases of PM_2 to assist with the identification of similarities and differences

between the use cases of PM_1 and PM_2. Moreover, the class, sequence, and statechart

diagrams of PM_2 need to be compared in order to support the identification of the

elements that can be reused when designing PM_1.

Scenario 3: Changes to product members in a software product line system

In this scenario, stakeholders analyze of the implications of changes in the system. The

stakeholders involved in this scenario are software analysts that specify changes to be

made in a design part of a product member and, together with software developers,

identify the effects of these changes in the other related design software artefacts.

For this scenario, supposed the situation in which an organisation has a software product

line with product members PM_1, PM_2, and PM_3 from our case study, and that

changes are made to the product members. Therefore, it is necessary to evaluate how

these changes will affect the other design models of PM_1, PM_2, and PM_3. For

example, if the changes on PM_1 affect the other product members in the same software

product line, developers may consider how to manage the changes. The types of

documents to be compared, for example, all the design models of PM_1 and PM_2 are

compared in order to assist with the identification of information that may be affected by

the changes.

Scenario 4: Changes at the software product line level

In this case, we investigate how to deal with the evolution and impact of the changes at

the software product line level. More specifically, this scenario is concerned with changes

at the product line level due to the addition of new features to the software product line

system. The stakeholders involved in this scenario are market researchers that identify

new features of the system and product line engineers that identify which aspects in the

product line level are related to the new features and the effect of these new features to

the other artefacts at the product line level. The types of documents to be compared.

DPU

36

4.2.2. Development Phase

During the development phase, Scenarios 1 and 2 are performed. More specifically, at

the beginning the software product line has not been established, the developer team

involves the establishment of it as planned in Scenario 1. Then, a new product member is

added, the developer team involves the creation of the new product member into the

software product line as planned in Scenario 2.

In particularly, the three software projects have been developed based on study, analysis,

and discussions of business domain. Software systems are created based on demands

which require a variety of software products. In this way, a number of documents are

created by developers. The team of developers analysed and designed a family of

software systems with three members. Each member has shared and specialized

functionalities with the family. The product members are aimed to satisfy different

targets of customers.

Reference requirements is produced and documented in term of a feature model as

software product line architecture is produced and documented in terms of subsystem,

feature, and process models [Jirapanthong, W. 2008]. The following artefacts are created:

(a) a feature model is created and composed of common features representing

mandatory features, alternative and optional, representing different features

between product members. For example, all product members must provide

features of processing accounting data, generating a report, managing log

files, and displaying time and date.

(b) a subsystem models is created and provides facilities for performing basic

tasks in the systems. But there exist various instances of the process and

module models, as well as there exist many instances of use cases, class,

statechart, and sequence diagrams.

(c) seven process models are created and each is refined for a subsystem in the

subsystem model.

(d) eleven module models are created and each is refined for a process in the

process models.

DPU

37

Moreover, the artefacts of each product member are created. For example, a use case is

used to elaborate the satisfaction of the functionalities for each product member. As

below, the list of artefacts created for each product member is shown.

PM_1

(a) four use case descriptions

(b) a class diagram

(c) a statechart diagram

(d) four sequence diagrams

(e) source code

PM_2

(a) four use case descriptions

(b) a class diagram

(c) a statechart diagram

(d) four sequence diagrams

(e) source code

PM_3

(a) six use case descriptions

(b) a class diagram

(c) a statechart diagram

(d) six sequence diagrams

(e) source code

DPU

38

Table 4.2: Summary of number of document types used in the case study, number of

main elements in the documents, and size of the documents

Document

Type

Number of

Document Type

Element

Type

Number of Element

Type

Feature

Model

1 Features 130

Subsystem

Model

1 Subsystems 5

Process

Models

7 Processes 48 (total for all 7

process models)

Module

Models

11 Modules 167 (total for all 11

module models)

Use Cases PM_1 = 4

PM_2 = 4

PM_3 = 6

Events PM_1 = 37 (total for

all 4 use cases)

PM_2 = 36 (total for

all 4 use cases)

PM_3 = 44 (total for

all 6 use cases)

Class

Diagrams

PM_1 = 1

PM_2 = 1

PM_3 = 1

Classes PM_1 = 23

PM_2 = 25

PM_3 = 27

Attributes PM_1 = 26

PM_2 = 26

PM_3 = 33

Methods PM_1 = 78

PM_2 = 82

PM_3 = 87

Sequence

Diagrams

PM_1 = 4

PM_2 = 4

Messages PM_1 = 114 (in total

for all 4 seq. diagrams)

DPU

39

PM_3 = 6 PM_2 = 82 (in total

for all 4 seq. diagrams)

PM_3 = 112 (in total

for all 6 seq. diagrams)

Objects PM_1 = 22 (in total

for all 4 seq. diagrams)

PM_2 = 21 (in total

for all 4 seq. diagrams)

PM_3 = 27 (in total

for all 6 seq. diagrams)

Statechart

Diagrams

PM_1 = 1

PM_2 = 1

PM_3 = 1

States PM_1 = 4

PM_2 = 4

PM_3 = 4

Transitions PM_1 = 8

PM_2 = 8

PM_3 = 8

Table 4.2 shows a summary of the types and number of documents for each type, the

number of elements in the documents.

4.2.3. Maintenance Phase

In this research, we also develop the case study of the maintenance phase. In particular,

Scenarios 3 and 4 are performed. There are changes on product members in a software

product line system and changes at the software product line level.

According to software product line-based systems, new requirements management can

be facilitated by the identification and analysis of commonality and variability principles

among software product line and product members. In particular, the software artefacts

are reusable and adaptable. A number of relations between artefacts are detected in order

to determine the association between the new requirements and existing software

artefacts in product members PM_1, PM_2, and PM_3 and software product line.

DPU

40

Different types of traceability relations are created to identify the role of those relations

[8]. For example, the relations between the new requirements and software product line;

between the new requirements and product member PM_1, and between software

product line and product member PM_1. For instance, there are

(a) four use case documents for PM_1 and three processes in a process model of

software product line that are related in terms of three different types of

traceability relations (i.e. satisfies, implements, and refines);

(b) one class diagram and four sequence diagrams of software product line that

are related in terms of containment. Those relations are then used in new

requirements management process.

4.3. The Development based on Waterfall Approach

As described in Section 4.1., we also applied waterfall approach to develop the same

software products. According to the approach, each software product is recognized as

individual software projects, namely PM_1, PM_2, and PM_3. The functionalities of

each software product are shown in Table 4.1.

As described in chapter 2, there are activities associated with waterfall software process.

Various stakeholders may be involved in the software development process ranging from

market researchers, to product managers, requirement engineers, software analysts, and

software developers. These stakeholders contribute in different ways to software

development, have distinct perspectives of the system, and have distinct interests in

different aspects of software systems.

In this research, we have conducted sets of experiments related to four different

scenarios concerned with software system development based on waterfall model. More

specifically, these scenarios include

(a) the creation of software systems, and

(b) changes to software systems.

DPU

41

For each of these scenarios we have identified the stakeholders involved in the process

and the types of documents that are related to the scenarios.

4.3.1. Scenarios of Software Project Development based on
Waterfall Approach

We describe below each of the scenarios.

Scenario 1: Creation of software systems

In this case, the stakeholders involved in this scenario are product managers that identify

the requirements of each software product; and product line engineers, software analysts,

and software developers that design and develop the documents for the software

systems.

For this scenario, suppose the situation in which the software systems are not available in

the organization. In this case, all the analysis and design models of software systems need

to be created. The stakeholders involved in this scenario are

(a) market researchers that are responsible for identifying the feasibility of

creating a new software product and the features that this new product should

include from a commercial point-of-view;

(b) requirements engineers that specify the requirements of the new product;

(c) software analysts that design the design models for new product; and

(d) software developers that implement the new product.

For this scenario, a development team does not need to consider other existing software

systems. A set of documents i.e. use cases, class diagrams, statechart diagrams, and

sequence diagrams of each software systems are created.

Scenario 2: Changes to software systems

In this scenario, stakeholders analyze of the implications of changes in the system. The

stakeholders involved in this scenario are software analysts that specify changes to be

DPU

42

made in a design part of a software product and, together with software developers,

identify the effects of these changes in the other related design software artefacts.

For this scenario, supposed the situation in which the software systems PM_1, PM_2,

and PM_3 are available, and that changes are made to those systems. Therefore, it is

necessary to evaluate how these changes will affect each design models of PM_1, PM_2,

and PM_3.

4.3.2. Development Phase

Similarly, the projects have been developed based on study, analysis, and discussions of

business domain. The developers are required to reproduce the software systems based

on the same set of requirements. Otherwise, this time they followed the waterfall

software process model. According to the waterfall model, a number of artefacts for each

single software product are created during software development process. As below, the

artefacts of each single software product are checked and submitted to the repository.

PM1

(a) a usecase diagram

(b) four use case descriptions

(c) a class diagram

(d) a statechart diagram

(e) four sequence diagram

(f) source code

PM2

(a) a usecase diagram

(b) four use case descriptions

(c) a class diagram

(d) a statechart diagram

(e) four sequence diagram

(f) source code

DPU

43

PM3

(a) a usecase diagram

(b) four use case descriptions

(c) a class diagram

(d) a statechart diagram

(e) four sequence diagram

(f) source code

Table 4.3: Summary of document types, number of documents, element type, and

number of elements in the documents, which are created for software project 1(PM_1)

Document

Type

Number of

Documents

Element

Type

Number of

Elements

Use Cases 6

Events 48 (total for all 6 use

cases)

Class

Diagrams

1

Classes 33

Attributes 37

Methods 98

Sequence

Diagrams

6

Messages 165 (in total for all 6

seq. diagrams)

Objects 32 (in total for all 6

seq. diagrams)

Statechart

Diagrams

1

States 4

Transitions 8

DPU

44

Table 4.4: Summary of document types, number of documents, element type, and

number of elements in the documents, which are created for software project 2 (PM_2)

Document

Type

Number of

Documents

Element

Type

Number of

Elements

Use Cases 6

Events 46 (total for all 6 use

cases)

Class

Diagrams

1

Classes 35

Attributes 36

Methods 112

Sequence

Diagrams

6

Messages 114 (in total for all 6

seq. diagrams)

Objects 34 (in total for all 6

seq. diagrams)

Statechart

Diagrams

1

States 4

Transitions 8

Table 4.5: Summary of document types, number of documents, element type, and

number of elements in the documents, which are created for software project 3(PM_3)

Document

Type

Number of

Documents

Element

Type

Number of

Elements

Use Cases 7 Events 61 (total for all 7 use

cases)

Class

Diagrams

1

Classes 37

Attributes 43

Methods 101

Sequence

Diagrams

7 Messages 132 (in total for all 7

seq. diagrams)

Objects 37 (in total for all 7

seq. diagrams)

Statechart 1 States 4

DPU

45

Diagrams Transitions 8

Tables 4.3, 4.4, and 4.5 show the summary of the types and number of documents for

each type, the number of various elements in the documents.

4.3.3. Maintenance Phase

For new requirements management on waterfall-based systems, developers divided their

work based on their roles. Firstly, the developers summarized all new requirements from

customers and reproduced new user requirement specification. Next, they redesigned the

system architecture, components and data models. They applied use case descriptions

and use case diagrams to explain the new requirements of the software product. They

updated class diagrams, sequence diagrams and activity diagrams of the entire project in

this stage. They re-implemented the software by following the documents and used unit

tests regularly. When completing all the components, the developers integrated all the

pieces together again and began an integration test. Finally, the developer delivered the

customers the complete software when all of these stages finished.

4.4. Experience on Requirements Engineering and Change
Management

At the beginning of the experiment, the developers are given the description of artifact

types which should be applied for requirement engineering process. However, in

practical, there are several different types of requirements. Each modeling artifact has its

strengths and weakness. Therefore several requirements modeling artefacts are applied.

Table 4.6 summarises common artefacts for modeling requirements in projects.

DPU

46

Table 4.6. Common artefacts for modeling requirements

Artifact Type Simple tool Description

Acceptance test Either Paper Describes an observable feature of

a system which is of interest to one

or more project stakeholders.

Business rule

definition

Behavioral Index card A business rule is an operating

principle or policy that software

must satisfy

Constraint

definition

Either Index card A constraint is a restriction on the

degree of freedom that a developer

team have in providing a solution.

Constraints are effectively global

requirements for a project.

Data flow

diagram (DFD)

Behavioral Paper A data-flow diagram (DFD) shows

the movement of data within a

system between processes, entities,

and data stores. When modeling

requirements a DFD can be used

to model the context of the

system, indicating the major

external entities that the system

interacts with.

Essential UI

prototype

Either Draft paper An essential user interface (UI)

prototype is a low-fidelity model,

or prototype, of the UI for the

system. It represents the general

ideas behind the UI but not the

exact details.

Essential use

case

Behavioral Paper A use case is a sequence of actions

that provides a measurable value to

an actor. An essential use case is a

DPU

47

simplified, abstract, generalized use

case that captures the intentions of

a user in a technology and

implementation independent

manner.

Feature Either Index card A feature is a small useful result in

the perspective view of users. A

feature is a tiny characteristic of

the system. It is understandable,

and do-able.

Technical

requirements

Non-

behavioral

Index card A technical requirement pertains to

a non-functional aspect of the

system, such as a performance

related issue, a reliable issue, or

technical environment issue.

Usage scenario Behavioral Index card A usage scenario describes a single

path of logic through one or more

use cases or user stories. A use case

scenario could represent the basic

course of action.

Use case

diagram

Behavioral Draft paper The use case diagram depicts a

collection of use cases, actors, their

associations , and optionally a

system boundary box. When

modeling requirements a use case

diagram can be used to model the

context of the system, indicating

the major external entities that the

system interacts with.

User story Either Index card A user story is a reminder to have a

conversation with the project

DPU

48

stakeholders. User stories capture

high-level requirements, including

behavioral requirements, business

rules, constraints, and technical

requirements.

4.4.1. Experience on Requirement Development for Software
Projects based on Software Product Line and Waterfall
Approach

The projects have been developed based on study, analysis, and discussions of business

domain. The team of developers analysed and designed a family of software systems with

three members. Each member has shared and specialized functionalities with the family.

The product members are aimed to satisfy different targets of customers.

According to several types of requirements artefacts as shown in Table 4.6, the

specification of requirements are done in different documents. Particularly, the reference

requirements is produced and documented in term of a feature model as software

product line architecture is produced and documented in terms of subsystem, feature,

and process models [Jirapanthong, W. 2008]. The feature model is created and composed

of common features representing mandatory features, alternative and optional,

representing different features between product members. The subsystem models is

created and provides facilities for performing basic tasks in the systems. But there exist

various instances of the process and module models, as well as there exist many instances

of use cases, class, statechart, and sequence diagrams. The process models are created

and each is refined for a subsystem in the subsystem model. The module models are

created and each is refined for a process in the process models. Moreover, the artefacts

of each product member are created. For example, a use case is used to elaborate the

satisfaction of the functionalities for each product member.

For single software development, a number of artefacts for each single software product

are created during software development process. The artefacts of each single software

DPU

49

product are usecase diagram, use case descriptions, class diagrams, statechart diagrams,

sequence diagrams, and source code.

Moreover, there are several techniques for eliciting requirements, summarized in Table

4.7.

Table 4.7. Techniques for eliciting requirements

Technique Description Strength(s) Weakness(es)

Active

stakeholder

participation

Extends on-site user

to have stakeholders

(users) actively

involved with the

modeling of their

requirements.

- Highly

collaborative

technique

- Domain expert

can define the

requirements

- Information is

provided to the

team in a timely

manner

- Decisions are

made in a timely

manner

- Many stakeholders

need to learn

modeling skills

- Stakeholders are not

available full time

Face-to-face

Interview

Meets key

stakeholders to

discuss their

requirements.

- Collaborative

technique

- Developers can

elicit a lot of

information

quickly from a

single person

- Stakeholders can

provide private

information that

- Interviews must be

schedules in advance

- Interviewing skills

are difficult to learn

DPU

50

they would not

publicly tell

Reading A wealth of written

information

available from which

developers can

discern potential

requiremetns or just

to understand

stakeholders better.

- Opportunity to

learn the

fundamentals of

the domain before

interacting with

stakeholders

- Restricted

interaction technique

- Practical usually

differs from what is

writtern down

- There are limits how

much developers

can read, and

comprehend the

information

4.4.2. Experience on Change Management for Software Projects
based on Software Product Line and Waterfall Approach

According to software product line-based systems, new requirements management can

be facilitated by the identification and analysis of commonality and variability principles

among software product line and product members. A number of relations between

artefacts are detected in order to determine the association between the new

requirements and existing software artefacts in product member and software product

line. Different types of traceability relations are created to identify the role of those

relations [Jirapanthong, W., A. Zisman. 2009].

For the software product line-based systems, it is supposed the situation in which the

organisation has established a software product line for their software systems with

software product members. Those are created from the development phase. And the

new requirements are done to a product member. Therefore, it is necessary to evaluate

how these new requirements will affect the other artefacts of the product member and if

these new requirements also affect other product members in the software product line

that may be related to the new requirements. The artefacts are inspected and determined

if they are related to the new requirements as shown in Figure 3.3.

DPU

51

For the single software systems, it is necessary to evaluate how these new requirements

will affect any artefacts of each software product. Developers divided their work based

on their roles. They reproduced new user requirement specification and redesigned the

system architecture, components and data models. They applied use case descriptions

and use case diagrams to explain the new requirements of the software product. They

updated class diagrams, sequence diagrams and activity diagrams of the entire project in

this stage. They re-implemented the software by following the documents and used unit

tests regularly. When completing all the components, the developers integrated all the

pieces together again and began an integration test. Finally, the developer delivered the

customers the complete software when all of these stages finished.

4.5. Analysis of Experiment Results

In this section, we analyse and evaluate the experiments by focusing on two aspects of

measurement:

(a) qualitative and

(b) quantitative measurement.

4.5.1. Qualitative Measurement

In general, qualitative methods and tools for system analysis can address the problem of

how to empirically determine the context of software process. In this research, we

focused on comparison between two software process methodologies how they are

practiced. As mentioned, we have conducted the survey and interview. It has been

observed that the customers are satisfied with the software product line resulting projects

and teamwork. Moreover, the software product line developers satisfied the process that

emphasis the software more than the documentation. However, it has been also noticed

that it is easier to train waterfall-based practices to inexperience developers but some

experience developers tend to resist some software product line practices because

 (a) they have to change their style in working, and

(b) it costs them for establishing the software product line artefacts.

DPU

52

Figure 4.1. Qualitative measurement

According to the survey, it is found that 33% of developers tend to resist software

product line practices with the above reasons, whereas 70% of developers are positive to

using software product line practices. Particularly, 82% of developers are satisfied when

performed the maintenance phase with software product line. Some of software product

line artefacts are used during the maintenance phase. And it is satisfied by the developers.

However, application engineering process depends on developer’ skill. Moreover, the

waterfall-based developers are unsatisfied to frequently update the documentation.

4.5.2. Quantitative Measurement

Basically quantitative metrics are fundamentally limited to the measurement of the size of

system, time and effort spent during software development process. In this research, we

measured the total of work hour spent during development and maintenance phases as

well as the errors during the phases by following the software processes. In particular, we

take account into the number of items causing a software system false. As mentioned

earlier, the developer team was required to develop a set of three software products two

DPU

53

times. One is applied with software product line and the other is applied with waterfall

process.

As shown in Table 4.8, the result shows that the effort of software product line-based

projects is less than waterfall-based projects. Software product line-based projects

enhance the productivity by using existing software artefacts. The methodology supports

software reuse at the largest level of granularity. The more software artefacts are reused,

the less time is spent. Although, developers spent extra time and effort to establish

domain artefacts, it seems the trend of effort for new products in the same product line

would decrease. On the other hand, for the waterfall-based projects, customers are

involved at the inception of project determined requirements and contractual agreement.

Developers wrote all documents before coding. Then customers changed some

requirements, maybe after they acquired finally product, developers needed to

significantly redesign and edit their documents. This took a lot of effort to achieve the

task.

Table 4.8 shows the effort and errors during development phase

 Product Name Work-hour

Error

Domain Engineering - 620 22

SPL-based project1 PM_1 315 17

SPL-based project2 PM_2 240 15

SPL-based project3 PM_3 215 15

Waterfall-based project1 PM_1 765 28

Waterfall-based project2 PM_2 848 21

Waterfall-based project3 PM_3 684 14

However, the number of errors which occur during the development phase of software

product line is high. Also, some defects are discovered during the integration process for

a product member. It took some effort to fix them. Comparing with waterfall-based

projects, there is less number of errors during development phase. It is because the

developer team is well experienced on waterfall process than the other one.

DPU

54

For maintenance phase, we measured the total of time to achieve the new requirements

as shown in Table 4.9. The result shows that the spending time of software product line -

based projects is less than of waterfall-based projects. Developers who performed the

maintenance phase found that well documentation can be useful and reduce the cost to

complete the task. In particular, the artefacts of a waterfall-based project are more

documentation than a software product line-based project. Otherwise, entire

documentation of waterfall process is inaccessible to maintainers whereas documentation

of software product line process is restored as repository to support in maintenance and

reuse process.

Table 4.9 shows the effort and errors during maintenance phase

 Product Name Work hour

Error

Software product line -based project1

PM_1 305 18

Waterfall-based project1

PM_1 380 17

Software product line -based project2

PM_2 25 11

Waterfall-based project2

PM_2 48 9

Software product line -based project3

PM_3 8 4

Waterfall-based project3

PM_3 23 6

4.6. Summary

This chapter has presented the experiments concerning with two software

development approaches. The case study encompassing three software projects are

presented. Also, the experience and results of the case study are described.

DPU

55

Chapter V Conclusions and Future Work

This chapter provides the conclusions, some useful suggestions for future study and,

future work of this research. Section 5.1 presents the overall conclusions. The future

work are described in Section 5.2.

5.1 Conclusions

In fact, the combination of different techniques and approaches is found in some works

[CAFE. 2003][ESAPS][Gomaa, H., M. E. Shin. 2004][Jirapanthong, W. 2005], the author

presented the framework of software product line artefacts which support activities in

software product line development. The mapping between key software artefacts,

particularly feature model and UML class diagram, was presented. Moreover, there are

some situations that require the evolution of software product line such as:

(i) there is a change on existing product family; and

(ii) the reusable components of a product family have missed some

functionalities.

Those situations occur when the maturity level of software product line in an

organization has grown. The organisation requires a software process which implements

new requirements and maintains the consistency of existing systems. An approach to

evolve software product line should be investigated in order to enforce a standardised

approach for evolution.

To conclude, we evaluated comparative study between software product line-based

process and waterfall-based process. The productivity during development using

software product line is higher than that using waterfall-based model. Also, a software

product line-based project is more maintainable than waterfall-based one. However,

software product line is unsuitable for all projects. It serves the reuse practice in an

organization having a large number of products, which have similar requirements and

DPU

56

some differences. Developers must consider the characteristics of the project to ensure

software product line is appropriate. In the other hand, waterfall process is suitable to

serve a software project which is small and has solid requirements.

Additionally, requirements engineering and management is a central task of software

product line development. It must be capable of deal with factors like upfront

development of a domain model, the constant flow of requirements, a heterogeneous

stakeholder community, a complex development organization, long-term release

planning, demanding software architecture, and challenging testing processes. For

successful software product line development, a collection of essential requirement

development practices must be in place, which needs to support the meta project

management capabilities. Many requirements engineering and management practices

must be tailored appropriately to the specific demands of software product lines. The

software engineering literature has pointed out the software product line development is

more complex and demanding than single product development. This complexity has

also particularly impact on requirements engineering and management. Of course,

general challenges of requirements engineering and management also reoccur in software

product line.

This work experienced the requirements engineering and management that arise in the

context of industrial software product line development. The developers are observed

for the satisfaction regarding the process of software product line. It is found that the

developers are satisfied the process that emphasis the software more than the

documentation. However, the process would be difficult to inexperience developers and

some experience developers tend to resist some software product line practices.

According to the research, it is found that 33% of developers tend to resist software

product line practices with the above reasons; whereas 70% of developers are positive to

using software product line practices. Particularly, 82% of developers are satisfied when

performed the maintenance phase with software product line. Some of software product

line artefacts are used during the maintenance phase. And it is satisfied by the developers.

However, application engineering process depends on developer’ skill. Moreover, some

developers are unsatisfied to frequently update the documentation.

DPU

57

Additionally, the developer teams found that types of requirements can be separated into

two categories: behavioural and non-behavioural. A behavioural requirements describes

how a user will interact with a system concerning user interface issues, how a user will

use a system or how a system fufills a business function or business rules. These are

often referred to as functional requirements. A non- behavioural requirements describes

a technical feature of a system, features typically pertaining to availability, security,

performance, interoperability, dependability, and reliability. Non-behavioural

requirements are often referred to as “non-functional” requirements. It is very important

to understand that the distinction between behavioural and non-behavioural

requirements is fuzzy.

A performance requirement which describes the expected speed of data access is clearly

technical in nature but will also be reflected in the response time of the user interface

which affects usability and potential usage. Access control issues, such as who is allowed

to access particular information, is clearly a behavioural requirement although they are

generally considered to be a security issue which falls into the non-behavioral category.

The critical thing is to identify and understand a given requirement. We found that it

becomes an issue if the requirements are managed and mis-categorised.

Moreover, the results show that the effort metric of software product line-based projects

is less than single software projects. Software product line-based projects enhance the

productivity by using existing software artefacts. The methodology supports software

reuse at the largest level of granularity. However, developers spent time and effort to

establish domain artefacts. Also, some defects are discovered during the integration

process for a product member. It took some effort to fix them. On the other hand, in

the single software team, customers are involved at the inception of project determined

requirements and contractual agreement. Developers wrote all documents before coding.

Then customers changed some requirements, maybe after they acquired finally product,

developers needed to significantly redesign and edit their documents. This took a lot of

effort to achieve the task.

DPU

58

However, software product line is unsuitable for all projects. It serves the reuse practice

in an organization having a large number of products, which have similar requirements

and some differences. Developers must consider the characteristics of the project to

ensure software product line is appropriate. In the other hand, waterfall process is

suitable to serve a software project which is small and has solid requirements. Also, the

developers are responsible for estimating the effort required to implement the

requirements which they will work on. Although the developers may not have the

requisite estimating skills, it does not take long for them to get better at estimating when

they know and get familiar with the software process methods.

5.2 Future Work

The following issues are interesting directions for future work:

1. Automatic process

 At present, the model is applied with using several software tools,

depending on its availability. The activities in software development process are

performed in a semi-automatic way. More specifically, some activities are done by

applying with software tools and some are manually performed. The automatic

process is expected to support the activities of software process such as

requirements elicitation and specification, requirements transformation into

design, and implementation into coding.

2. Standardized approach for software product line evolution

An approach to evolve software product line should be investigated in

order to enforce a standardized approach for evolution.

3. Extension to small and medium-sized software projects

 The techniques and approaches for software product line development

should be further extended to allow establishing software product line for small-

and medium- sized projects. In the future work, we plan to gather more data

DPU

59

from the projects in order to develop statistic evaluation of comparison between

small or medium-sized and large-sized software projects.

 DPU

References

Bosch, J. 1998. Product-Line Architectures in Industry: A Case Study. Pages 544 - 554.

The 21st International Conference on Software Engineering. IEEE, Los Angeles,

USA.

CAFE. 2003. from http://www.esi.es/en/projects/cafe/cafe.html.

Clauss, M. 2001. Modelling variability with UML. GCSE 2001 - Young Researchers

Workshop.

Clements, P., and L. Northrop. 2002. Software Product Lines: Practices and Patterns.

Addison-Wesley, Boston, MA.

Clements, P., and L. Northrop. 2004. A Framework for Software Product Lines Practice.

http://www.sei.cmu.edu/productlines/framework.html

ESAPS. From http://www.esi.es/en/Projects/esaps/esaps.html.

Fantechi, A., S. Gnesi, G. Lami, and E. Nesti. 2004. A Methodology for the Derivation

and Verification of Use Casees for Product Lines. Pages 255-264. The 3rd

International Conference, SPLC 2004. Springer Verlag, Boston, MA, USA.

Garlan, D. and M. Shaw. 1993. An introduction to software architecture. In Advances in

Software Engineering and Knowledge Engineering, Volume I. World Scientific

Publishing Company.

DPU

61

Gibson, P., B. Mermet, and D. Méry. 1997. Feature Interactions: A Mixed Semantic

Model Approach in O'Regan and Flynn, eds. 1st Irish Workshop on Formal

Methods (IWFM97), Dublin.

Gomaa, H., and M. E. Shin. 2004. A Multiple-View Meta-modeling Approach for

Variability Management in Software Product Lines. Pages 274-285. 8th

International Conference (ICSR 2004). Springer Verlag, Madrid, Spain.

Griss, M. L., J. Favaro, and M. d. Alessandro. 1998. Integrating feature modeling with the

RSEB. Pages 76-85 in P. Devanbu and J. Poulin, eds. the 5th International

Conference on Software Reuse. IEEE Computer Society Press.

Jirapanthong, W. 2005. Supporting Product Line Development through Traceability.

12th Asia-Pacific Software Engineering Conference (APSEC 2005), Taipei,

Taiwan.

Jirapanthong, W. 2008. An Approach to Software Artefact Specification for Supporting Product

Line Systems. the 2008 International Conference on Software Engineering

Research and Practice (SERP’08), Las Vegas, Nevada, USA, 2008.

Jirapanthong, W., and A. Zisman. 2009. XTraQue: traceability for product line systems.

Software and System Modeling 8(1): 117-144 (2009).

John, I., and D. Muthig. 2002. Tailoring Use Cases for Product Line Modeling. REPL'02,

Essen, Germany.

Kang, K., S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented

Domain Analysis (FODA) Feasibility Study. Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA.

DPU

62

Kang, K. C., S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. 1998. FORM: a feature-

oriented reuse method with domain-specific architectures. Annals of Software

Engineering 5: 143-168.

Krueger C.W. “Software Mass

Customization”,http://www.biglever.com/papers/BigLeverMassCustomization.

pdf

Northrop, L. M. 2002. SEI's Software Product Line Tenets. IEEE Software 19: 32-40.

Svahnberg, M., J. Gurp, and J. Bosch. 2001. On the Notion of Variability in Software

Product Lines. Pages 45-55. The Working IEEE/IFIP Conference on Software

Architecture.

DPU

Biography

Name Dr. Waraporn Jirapanthong

Education Background • PhD. in Computer Science, Software Engineering

Group, City University, London, UK.
• MSc. in Computer Science, Faculty of Science,

Mahidol University, Thailand.
• BSc. in Computer Science (First Class Honors),

Faculty of Science, Thammasat University, Thailand.

Employment Assistant Professor , Faculty of Information Technology,

Dhurakij Pundit University

DPU

	Titlepage
	Abstract
	Acknowledge
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Reference
	Profile

