An Approach to Software Artefact Specification
for Supporting Product Line Systems

Dr. Waraporn Jirapanthong

This research has been funded by
Dhurakij Pundit University
2008

FIBTUHAN T IVE
4
1509
2 tf-':; = ¢ o ¢ ¢ o -y s
msasalseavsyaverlamsausvaduayu

mswarnnguyeamsuuullsanalas

Il

v G
A9. 391N ITZNUFNO

v
o A

F1BUNT IV 1A UNUYATHHIIN

= s A W oA G
NHIINENAYTINIVUNAL

.....

.. N |
e 0138039 .7, 2551

" Abstract

This research is aimed to resolve the difficulties of software specification, particularly
software product line systems. One of the research’s contributions is the meta model for
product line systems. The imodel is used as the reference model for specifying of
requirements and design attefacts. Moreover, we envisage the use of prototype tool as a
general platform for creating the artefacts. Five tasks were created to demonstrate
different situations of software product line development, involving different types if
documents and different stakeholders. The experiments of artefact creation have been

evaluated by considering two criteria: precision and recall measures; and satisfaction ot

USETS.

UNAAED

Y dyd I = 3/ | as o o o
nuddeitaanueiozud lnigyvumzanugann lumsiamnyenauwds laglanizns

Y
=4

as o o’ - oy a’ 3 = as g/ 1 3 o I o as
wannwerduasuuuTdsand ey lunuitedduas ldiiaueuliuuI1aIu0In T WAIL

=

¢ g0 ot 4 T g o ' = g = o’
soranTEmsussvugendnT sandlay FelszneudledelseavgiFaenaudsuuy

g/ =

I 1 o = o . as a d = o a
#1INE Tﬂﬂﬁitﬂﬂﬂqﬁu@maﬂim@%@ﬂﬂquj%ﬂﬂqﬂiﬂﬂjzﬂquﬂ’ljW@Ju1ﬁ3ﬂ§$ﬂ3&ljL%QW@WWM??
oy TR) Y A A A w2 Y | =
LUDAITUADINTT llﬂl,lﬂ DNTS, VBRI, I‘M‘ﬂ ‘H"J"E)E]u“]“VI‘U‘L!Vlﬂ‘ﬂ”J’lim’é)ﬂﬂ’lﬂmﬁ‘.‘:‘j‘tﬁ!ﬁm@ﬂﬂ
2 e | F Sy oy W
W@QW@-‘NG‘!L&’J‘EWW@QM?LLﬁm’e)ﬂ'm‘iﬂ']‘i@’f]ﬂL.L‘U‘UiE‘U‘U“H’E}WGILL’J‘E uaﬂﬂﬁlﬂu&l“ﬂ@‘l@ﬁchﬂ

=y g o

s 4 A A qu Y A A q ¥
uuusiasunseiaio 15 umsnaassai wdel s weransaenan melagiuuy
- Ly of

2/ , a:.l: 3/ 3/ y 4 o Qs < s =1
AINARBIR DY MINAARIIFILLY gRa aiesmesroiumsalimsiau ldsana lauy
1 s =9 -:;. a e o s d e o o’ ' s '
LARANNY SIUDUNEIMUA UM TES 1A 52 aNT T NI T UTSIANA1 NULAZNRNUBY

Y) s : o« 7 I LY a9 = _ f

Aingrteslumswaur TUsana launuanmedy_a1snaaedgniszaiunisnssanmain
) ;¢ 1 7 1 o i .

aNABY (precision measure) UALAIANNLYUEG (recall measure) TIMAIAIANUNIND T9 YD

»
NAADI 1FITH

111

Acknowledgement

[am grateful to Dhurakijpundy University for the financial support for this

research.

1V

Declaration

Some of the material in this report has been previously published in the paper:

o W. Jirapanthong, "Techniques and Approaches for Developing Software Product
Line", the 2007 International Conference on Software Engineering Research and

Practice (SERP'07), Las Vegas, Nevada, USA, 2007

I grant powers of discretion to Dhurakijpaﬂdjt University to allow this research to be
copied in whole or in part without further reference to me. This permission covers only

single copies made for ~study purposes, subject to normal conditions of

acknowledgement.

Contents

ABSTRACT I
ACKNOWLEDGEMENT I11
DECLARATION IV
LIST OF FIGURES VIII
LIST OF TABLES X
CHAPTER1 ‘

INTRODUCTION 1
CHAPTER 2

LITERATURE REVIEW 4

2.1 INTRODUCTSESX TO PRODEST LINE L

(1]
L

2.1.1 TERMINCGERGIES IN PREVUCT 4N

22 ACTIVITIES WiEHE PPROGESE OF) PRODUCT LINE 7
SYSTEM DEVELOPMENT |
2.2.1 DOMAIN ENGINEERING 9
2.2.2 APPLICATION ENGINEERING 14
23 METHODOLOGIES FOR THE DEVELOPMENT OF 16
PRODUCT LINE SYSTEMS

2.4 SUMMARY 23
CHAPTER33

APPROACH 29
3.1 INTRODUCTION 29
32 REQUIREMENTS ARTEFACTS 30
3.2.1 USE CASE 30
3.2.2 FEATURE MODEL 29
3.3 DESIGN ARTEFACTS 28
3.3.1 CLASS DIAGRAM 38

3.3.2 STATE CHART DIAGRAM 40

vl

3.3.3 SEQUENCE DIAGRAM 42
3.4 SUMMARY 44
CHAPTER 4

IMPLEMENTATION 45
41 OVERVIEW 45
42 INTERFACE 47
42.1 SELECTING SPECIFIC TYPE OF DOCUMENT 47
422 SPECIFYING A USE CASE 50
423 SPECIFYING A FEATURE MODEL 52
42.4 CONVERTING A DOCUMENT INTO XML 54
4.3 SUMMARY 54
CHAPTER 5

EVALUATION AND ANALYSIS 55
5.1 EVALUATION OBJECTIVES AND METHODS .55
5.1.1 SELECTION OF PARTICIPANTS 55
5.1.2 TEST CASES 57
5.1.3 MEASUREMENT OF TEST 62
52 EVALUATION RESULTS AND ANALYSIS 63
5.3 SUMMARY 69
CHAPTER 6

EVALUATION AND ANALYSIS 70
6.1 OVERALL CONCLUSIONS 70

6.2 THE FINDINGS 71

62.1 PROBLEMS OF THE ESTABLISHMENT AND 71

MAINTENANCE OF DPRODUCT INE SYSTEMS IN

ORGANISATIONS

6.2.2 PRECISION AND RECALL MEASUREMENT T4
74

6:2.3 BENERITH

6.3 FUTURE WORK

6.4 FINAL REMARKS

BIBLIOGRAPHY
BIOGRAPHY

VIl

79
75

77
82

V1L

List of Figures

FIGURE 2-1: ACTIVITIES IN SOFTWARE PRODUCT LINE 9
ENGINEERING ADOPTED FROM (Clements and Notthrop 2004)

FIGURE 3-1: USE CASE SENDING A MESSAGE 33
FIGURE 3.2: DIFFERENT NOTATIONS FOR DIFFERENT TYPES 34
FIGURE 3-3: THE FEATURE MODEL OF THE MOBILE PHONE 37
FIGURE 3-4- FEATURES. IN TEXTUAL SPECIFICATION 57
LANGUAGE

FIGURE 3-5: AN EXTRACT OF A CLASS DIAGRAM 40
FIGURE 3-6: AN EXTRACT OF/A STATE CHART DIAGRAM 42
FIGURE 3-7: AN EXTRACTOF A SEQUENCE DIAGRAM 44

ARCHITECTURE OF OUR TOOL ~ 40

L1

FIGURE 4-1: THI

FIGURE 4-2: AN INTERFACE FOR SPECIFYING THE TYPE OF 43
SOFTWARE ARTEFACT TO BE CREATED

FIGURE 4-3: EXAMPLE INTERFACE DEMONSTRATING 50
SPECIFYING OF TYPES OF DOCUMENTSARTEFACTS

FIGURE 4-4: AN INTERFACE FOR CREATING A USE CASE 51
FIGURE 4-5: EXAMPLE OF SPECIFYIGN A'USE CASE D
FIGURE 4-6: AN INTERFACE FOR SPECIFYING A FEATURE 53
MODEL

FIGURE 4-7: EXAMPLE OF SPECIFYING A FEATURE MODEL 53
FIGURE 4-8: AN INTERFACE TO TRANSFER A DOCUMENT 54
INTO XML

FIGURE 5::8CENARIO FOR TASK 1 59
FIGURE 5-2: SCENARIO FOR TASK 2 60
FIGURE 5-3: SCENARIO FOR TASK 3 01
FIGURE 5-4: SCENARIO FOR TASK 4 61

FIGURE 5-5: SCENARIO FOR TASK 5

1%

FIGURE 5-6: PRECISION AND RECALL FIGURES OF EACH
GROUP AS WELL AS THE AVERAGE PRECISION AND RECALL

OF ALL. TESTS
FIGURE 5-7: COMPARISON OF QUALITATIVE

EVALUATION ON CONVENTIONAL SOFTWARE
ENGINEERING APPROACHES AND OUR APPROACH FOR

SPECIFYING OF SOFTWARE PRODUCT LINE SYSTEMS

USER

67/

69

List of Tables

TABLE 3-1: PRESENTS THE CLASSIFICATION O

el

RELATIONSHIPS BETWEEN FEATURES

TABLE 4- 1: ICONS IN PANEL (a)

TABLE 5-1: PARTICIPATION OF EACH GROUP FOR EACH

TASK
TABLE 5-2: SUMMARY OF REQUIREMENTS

AND DESIGN

ARTEFACTS CREATED OR CHANGED IN EACH TASK BY ALL

GROUPS

TABLE 5-3: SUMMARY OF REQUIREMENTS
ARTEFACTS CREQPLED IN TASKS

TABLE 5-4: SUMMARY OF REQUIREMENTS
ARTEFACTS CREATED IN TASK 2

TABLE 5-5: SUMMARY OF REQUIREMENTS
ARTEFACTS CREATED IN TASK'S

TABLE 5-6: SUMMARY OF REQUIREMENTS
ARTEFACTS CREATED IN TASK 4

TABLE 5-7: SUMMARY OF REQUIREMENTS
ARTEFACTS CREATED IN TASK 5

AND DESIGN

AND DESIGN

AND DESIGN

AND DESIGN

TABLE 5-8 SUMMARY OF ARTEFACTS INVOLVED: IN THE

TESTS

TABLE 5-9: PRECISION AND RECALL RATES (%)

TABLE 5-10: SUMMARY OF APPROXIMATE TIMI

EACH TEST (HOURS)

SPENT IN

(4]

49
64

64

%
65
65
65
66

06

N
oo

Chapter I Introduction

L

In recent years we have been expetiencing the proliferation of a large number of

software systems that share a common set of features and have also theirr own distinct

characteristics. Examples of such systems are found in the telecommunication domain 1n
which products including personal digital assistants (PDAs), mobile phones, and pagers
have many common characteristics. Other examples are found in the automotives,
electronics, medical imaging, and elevator control domains. These systems are known in
the literature as product line systems (Axdis and Weiss 1997, Bass et al. 2003, CAFE 2003,
Clements and Northrop 2002, Clements and Northrop 2004, Staudentnayer and Perry
1996, Weiss and TLai 1999) and are characterized as being software systems that share a

common set of features and are clevelmped based on the reuse of core assets and addition

of new functionalities.

According to the software product line development, the main activities are analysis,

design, and implementation of similar and different aspects of the systems:

1) Analysis — this activity is aimed to explore and justify the requirements of product
line systems which represent the common and variable aspects of the systems. In
particular, the artefacts being generated from the analysis process of software
product line systems are namely reference requzrements.

2) Design — this activity is aimed to elaborate the requirements from the analysis
process and to design the software systems for the product line. More
specifically, the design presents the commonality and variability in design aspects.
The ﬂrtefﬂcts‘bemg cenerated from the design process of sottware product lmne
systems are namely software product line architecture.

3) Implementation — this activity 1s aimed to implement the requirements and

design artefacts produced from previous processes as COMPONents and to

pects of a

) . | I
rssemble a software svstem which includes common and varniable aspec

2

product line. In particular, the artefacts being generated from the implementation

process are a set of reusable software components and software systems of product

line.

In principle, the reference requirements, sottware product line architecture, and reusable
software components are gradually generated during the process of sottware product line
development. They are later reused for developing a software product member 1n an

effective and efficient way. It is meant to support the risk reduction during the sottware

development.

However, accotrding to the majotity of approaches being used in organisations, there are

some issues found:
1) the software product line apptroaches proposed recently are not flexible,
practical, and approptiate enough to the conventional approaches being used 1n
the organisations;

2) different organisations have various behavioral cultures and traditions depending
on the strategies and missions of the organisations. In particular, many
organisations found difficulties to adopt the software product line approaches to

fit into their strategies and missions.

Consequently, there are still errors and mistakes during the development of software
systems that requites the reuse of software components. Also, invalid use of software

product line approaches decreases the benefits of having the product line systems.

We advocate the fact that the software product line systems should be established in an
organisation, since the systems support the reuse of sottware components which leads

less error-prone and less time consuming. We expect to reduce the difficulties of

development activities, in particular, analysis and design.

This research s aimed to develop the meta model of sottware speaiﬁt:ﬂtic:ﬂ in order to
support the development of software product line systems. In particular, the main

contributions of our work are:

;JJ

Firstly, we have investigated which artefacts are playing the main roles in the process of

product line system develﬂpmem and which artefacts are applied 1n organisations.

Secondly, we propose a model for specifying of software product line artefacts. The
model is proposed by takiny into consideration:

(a) the semantics of document types;
(b) the activites during the software development process; and

(c) the available techniques and tools being used in an organisations.

Next, we have justified the model for generating the artefacts in the domain of product
line systems through five different scenarios. Each scenario presents the testing of

generating the documents that occuts during the process of product line system

develﬂpment

The remainder of this report is organized in five chapters as described below:

Chapter 2 presents a survey on product line, mnclading the current methods and

techniques for product line system development.

Chapter 3 presents the model that represents the different types of documents and

describes the structure of each document type for specifymg the commonality and

variability for product line systems.

Chapter 4 pre sents a prototype tool to assist an end-user to apply the model for

specification of software product line artefacts.

Chapter 5 contains a description of the experiments that we have developed to

demonstrate the work and evaluates the expertmental results of our work.

Chapter 6 discusses the conclusions and directions for furure work.

Chapter II Literature Review

%

This chapter describes a literature of software product line including current problems,
and existing approaches, techniques and tools in the domain of product line systems. The
motivation and related terminologies are given in Section 2.1. In Section 2.2 presents the
activities during software - product line. Also, Section 2.3 illustrates existing

methodologies proposed for software product line development.

2.1. Introduction to Product Line

Software reuse is the process of software development by using existing software artefacts
(Department_of Defense 1996). Over the last years, approaches and techniques for
sottware treuse have been developed and extended. According to (Clements and
Northrop 2002, ESAPS, Weiss and Lai 1999), software reuse at the largest level of
granularity is supported by product /fine. This is to serve the reuse practice in an
otganization having a large number of products, which drives issues such as highly
expensive, complex, and tedious tasks. The different exact definition of product line will

be given in Section 2.1.1.

The idea of product line was motivated by the need to systematize a number of products
more etfectively and the fact that these products have a certain set of common and
special functionalities. For example, a mobile-phone company has created a mobile-
phone product line that contains a set of mobile-phones. Some lowet-end mobile-phones
have similar basic functionalities but different hardware capacities to offer competitive
ptice. Mobile-phone network communications in some countries provide different
standards of transmuission and signaling and depend on regional diversity; thereby, a

company previdee different support for different regiene.

LN

2.1.1. Terminologies in Product Line

We describe below terminologies used in the domain of product lime.

Product Line

Initially, Parnas (Parnas 1976) defined program family as a set of software programs
constituted as a family wh;reby a program is developed by applying common properties

of prior programs and adding extra properties to the program.

In (Bass et al. 2003, CAFE 2003, Clements and Northrop 2004, Staudenmayer and Perry
1996, Weiss and Lai 1999), product family is defined as a set of products sharing some
common aspects and having some different aspects. The product family is aimed at
oaining the market share under the same business domain and marketing factors. They
also suggested product members that are products which are built-up by applying shared
assets ie. requiretnents, architecture, models, and source code in a product family.
Eventually, product line and business #nit are other terms found m the literature that have

the same meaning as that of product family (Ardis and Weiss 1997, Bass et al. 2003,
Clements and Nozrthrop 2004).

L4

According to (Bass et al. 2003, CAFE 2003, Clements and Northrop 2002, Staudenmayer
and Perry 1996), product family takes into account both hardware and software systems.
In (Clements and Northrop 2002), they suggested that a sof/ware product line 1s a set of
software-intensive systems sharing a common, managed set of features that satisty the

speciﬁc needs of a pﬂrtic:ular market segment or mission and is developed trom a

common set of core assets in a prescribed way.

In this work. we focus on and call the software systems that are developed for product

line as product line systens.

Features
The term feature has been initially used in (Kang et al. 1990). The authors defined a

feature as a prominent and distinctive aspect or characteristic of a system that 1s visible to

various stakeholders (e.g. end-users, domain experts, developers). In (Bosch 2000,
Gibson et al. 1997, Griss 2000, Svahnberg et al. 2001), a feature is concerned with a
logical behavior of a system that is specified as a requirement or set of requirements (1.e.
functional and non-functional requirements). In (Batlin 1990), the author suggested a
different definition whereby a feature refers to any distinctive or unusual aspect of a
system that requites a delision for system engineering. In this work, we use the term
feature as a user-visible aspect or as a characteristic of product line systems. A feature is
related to other features and represented in a tree structure of And/Or nodes to express

common and variable aspects within product line systems

Core Assets

Core assets (Clements and Notrthrop 2004) are those assets that form the basis for a
product line. Cote assets include requirements, architecture, and reusable software
components, domain models, documentation and specifications, schedules, test cases,
and work plans. In (Riebisch et al. 2002), the authors also suggested that cote assets ie.
requirements, architectures, analysis models, design models, test cases, and source codes
are reused between different product members in product line. A variant term of core

asset 1s platfornz that 1s defined 1n the domain of Model-Driven Architecture (MDA).

Commonality Vs. Variability
According to (Bosch 1998, Clements and Notthrop 2004, Weiss and Lar 1999),
commonalify 1s concerned with a set of similar functionalities or aspects between product

members of product hine and warabiiity 1s detined as different functionalities or aspects

between pmduct members of product hne.

2.2. Activities in the Process of Product Line System Development

According to the maturity level of an organization, the approaches for the development
of product line can be categorised, namely proaciive, reactzve, and extractive. We describe

below three types of approaches for the product line system development.

%

Proactive

The proactive approach (Krueger 2001) is an approach of the product line system
development when an organization decides to analyse, design, and mmplement a line of
products prior to the creation of individual product members. The product line 1s built-
up and the core assets representing the commonality and vamability are created. All
product members are then created under the scope of the product line. The approach i1s

viewed as a top-down developing strategy which requires the Setting of broad goals and

the goals are refined 1n later phases of the development.

Reactive

The reactive approach (Krueger 2001) 1s an approach of the product line system
development when an organization enlarges the product line systems 1n an incremental
way based on the demand for new product members or new requitements for existing
products. The core assets need to be extended and evolved in such a way as to
correspond to new requirements or new systems. Lhis is caused by the fact that the
customer requirements considerably influence the architecture and the design of
products. On the other hand, a company that sticks strictly to the principles of made-to-
ordet manufacturing will not allow an uncontrolled proliferation of variety due to the
demands of individual customers. However, in reality, many companies have a
production control concept based on customer requirements. So the problem occurs
when the architecture and design of product line systems should be maintained. This
level of development takes shorter ume than the previous one since system developers

only extend and ﬂdﬂp’: the available pmductﬁ.

Fxtractive

The extractive approach (IKrueger 2001) is an approach of the product line system
development when an organisation creates product line systems based on existing

product members by identifying and using common and variable aspects of these

products. The stakeholders i.e. domain experts and system developers analyse and define
the product line by taking into consideration individual products’ requirements. The
approach 1s viewed as a bottom-up developing strategy that begins with existing artefacts
¢.g. requirements specification, design and source code, then creates the higher

oranularity level of each artefact as the core assets.

In the following section, we describe the activities occurred during tne product line
system development process. In addition to (Bosch 2000, Clements and Northrop 2002,

Jazayeri et al. 2000, Thiel and Hein 2002), soffware product line engineering is a methodology

for developing product line systems that focuses on activities of analysis, design, and
implementation of product line as well as the use of the core assets inclusive common

and variable artefacts potentially and effe:::ﬁve.l}* for product members.

Figure 2-1 idlustrates the main activities of software product line engmﬁeﬂng t.e. domain

engineering and application engineering.

Feedbaok

Nomain Engineering
Produoct Family’s
Eoamain Domain » " Jomain
.—-———-——* - W Pramuun J}E‘iign W 4
Analvysis : ' ' Emplementation

3 : ;', T

. . : .
..d"'"".“-‘- H""‘h ;’__,.-r-—"' il _-__""‘x
[~ - e T
e T 5l ; g ey A
g s =l N Software Product |, = e
Reference " V| Line Architecture M V] Reusabie Software
Regquirenien LL) . M oy

Produet Members ™ B
Requiremeints Requirements : e g Entegrration ani
M Yy : M]}Eg}gﬂ .‘*lﬁﬂl}'ﬁ[ﬁ pmmn-—-—’- | i o
Fngineering Festing
R
~ Producr Members
Application Engineering

Figure 2- 1: Activities in software product line engineering adopted from (Clements and
Northrop 2004)

2.2.1. Domain Engineering

Domain engineering is a systematic process for the creation of the cote assets (Clements and

Northrop 2004). There are three steps for domain engineering:

Domain Analysis

Domain Analysis is the process of identifying, collecting, organizing and

representing the relevant information in a domain, based upon the study of

existing systems and their developing histories, knowledge captured from
domain experts, undetlying theory, and emerging technology within a

domain (Kang et al. 1990).

19

As shown in Figure 2-1, software artefacts that are produced during the activity of
domain analysis are called reference requirements. The reference requﬁemﬁnts define the
products and their requirements in pr-::rdu::t line. The reference requiremems contain

commonality and varability of the product line. The following sub-activities occur during

the domain analysis:

I. Scoping

According to (Arango and Prieto-Diaz 1991, Ardis and Weiss 1997), domain analysis for
product line basically starts from scoping. Scoping is to identify the context of product
members in product line e.g. functionalities and performances. The actvity 1s concerned

with domain knowledge obtained from domain experts and other sources such as books,

user manuals, and design documents (Nuseibeh and Easterbrook 2000). The domain
experts analyse and define the boundary of the product line and the standard

terminologies 1n the product line. The product members are therefore defined.

II. Commonality and Vartiability

The activity of defining commonality and variability is to thoroughly discover and detine
commonality and variability in product line (Ardis and Weiss 1997, Weiss 1995). Many
existing approaches are proposed to support the activity. Examples of such approaches
are (Ardis and Weiss 1997, Bosch 2000, Clements and Northrop 2002, Svahnberg and
Bosch 2000, Weiss 1995). The determination of whether a characteristic 15 a

commonality or variability mostly depends on a strategic decision of organisations.

In particular, defining commonality 1s the determination of whether a requirement is
served as the commonality of product line. Defining variability is the determination ot
whether a requirement is served as the variability of product line. Varability i1s

represented as a set of variation points. Each variation point is a situation that product

members can be specialized differently and dependent on a number of variants. Variants

are possible variables for each variation point. A variation point 1s classified as: (1} oprional
— an aspect may exist 1 a product; {11) alfernative — an aspect can be specialized as one of

-

the variants; and (iil) optional alternative — an aspect can be specialized as one of rhe

11

variants or does not exist (Svahnberg et al. 2001). Variation points can appear at different
phases of product line system development i.e. analysis, design, and implementation. At

the state of domain analysis, a variability point is concerned with the highest abstraction

level of an artefact.

I11I. Planning for Product Members and Features

Accotding to (Arango and Prieto-Diaz 1991), one of the activities in domain analysis is
to identify features of product members in product line. The features of a product line
are planned for possible product members. In other wotds, the relevant requirements of
product members are associated to the features of product line. The common and

vatiable aspects of product line are accommodated and planned for product members.

Domain Design

Domatn design 1s the process of developing a design model from the products
of domain analysis and the knowledge gained from the study of software

requirements or design reuse and generic architectures (Garlan and Shaw

1993).

Software artefacts that are produced during the activity of domain design are called
software product line archifecture (see Figure 2-1). In (Bass et al. 2003, Jazayeri et al. 2000),
software archifecture forms the backbone of mntegrating software systems and consists of a
set of decisions and interfaces which connect software components together. Software
product hne architecture differs from an architecture of single systems that it must
represent the common design for all product members and variable design for specific

product members (Linden et al. 2004). The following sub-activities occur during the

domain design:

I. Software Product Line Architecture Definition

The activity ot software product line architecture definition 1s to design the software

T

architecture that describes commonality and vanabiity of product members. The

J 1T VL

software product line architecture is composed of a set of architectural decisions, a set of

reusable design artefacts, and a set of optional design artefacts.

The variability in software product line architecture is called desioned variability pornts
(Svahnberg et al. 2001). The softwatre product line architecture can be elaborated into
ditferent levels of granulasity. At higher levels, the software product line architecture
does not entail shared artefacts between product members while at the low levels, the

software product line architecture make a distinction between specific designs Gif product

members.

II. Software Product Line Architecture Evaluation

The activity of software product line architecture evaluation is to evaluate the software
architecture that describes commonality and variability of prﬁduc:t members. The

evaluation of software product line architecture is to assure that the architecture has the

right properties and characteristics of product line.

For the evaluation of software product line architecture, the following must be
considered: (1) the context for software product line architecture must be scoped and
planned during domain analysis; (i) the commonality of product line must be elaborated
mn several levels of the architecture; and (i) the variability of product line must be
identified and provided with a set of variants for each designed variability point in the

software product line architecture.

However, Bosch (Bosch 2000) suggested that the maturity of software product line
architecture can be viewed as three levels: (i) an #uder-specified architecture that defines
common aspects but does not specify differences between product members; (i) a
spectfied architecture that defines both common and variable aspects for product
members; however, does not define possible variables for variable aspects; and (ii1) an

enforced architecture that defines both common and variable aspects covering possible

variables tor all product members.

13

Many approaches and techﬂiques are prﬂposed to support domain design for product

line. Relevant existing methodologies e.g. model-based software engineersng (MBSE 1993),
organizational domain modeling (ODM) (Simos 1995), synthesis (Campbell et al. 1990), domain-
spectfic software architecture (DSSA) program (Tracz et al. 1993), evolutionary domain life-cycle
(EDIL.C) (Gomaa et al. 1989) are applied for the development of software product line

architecture. Some general-purpose techniques such as data flow diagrams, structured

analysis and design techniques, entity relationship modeling (ERM), object models (e.o.
UML (UML), view point-otiented models (Finkelstein et al. 1990) can be also applied
for the activity. Recently a number of methodologies such as (Atkinson et al. 2000,
Batory et al. 2000, Bayer etal. 1999, Guiss et al. 1998, Kang et al. 1998, QADA, Simos
1995, Weiss 1995, Weiss and Lai 1999) are proposed to particularly support the activity

of domain design in the domain of product line.

Domain Implementation

Domain implementation 1s the process of identifying reusable components

based on the domain model and generic architecture (Clements and

Northrop 2004).

Software artefacts that are produced during the activity of domain implementation are
called rexsable software components (see Figure 2-1). The activity 1s focused on the creaton of
reusable software components e.g. source codes and hnking libraries that are later
assembled for product members. In (Szyperski 1997), a reusable software component 1s a
unit of composition with interfaces and independent context. The reusable software
component is created and then integrated with other reusable software components for a
particular product membet. The set of reusable components are defined independently
and provide the connectots for integration with other components to fit into a spectfic
functionality. The components are viewed as black boxes whose data and
implementauon details are completely hidden and only interfaces are allowed. The
development of components can be applied with relevant existing methods such as

object-otriented methods e.g. (Bosch 2000, Szypersk: 1997).

i4

At the end of the domain engineering process, an organization is ready for developing

product members. In the following section, we desctibe the activities for developing the

product members in the software product line engineeriﬂg.

2.2.2. Application Er;gineering

As shown in Figure 2-1, application engineering is another major activity of software
product line engineering. According to (Northrop 2002), application engineering 1s a
systematic process for the creation of a product member from the cote assets created
dlLli‘]._tlg the domain engineering. Domain engineering assures that the activities of analysis,
design and implementation of product line are thoroughly performed for all product
members, while application engineeting assures the reuse of the core assets of the

product line for the creation of product members.

The application engineering process for product line is comparably considered with the
process for a single system (Clements and Northrop 2004). There are activities such as:
(i) requirements engineering, which is a process that consists of requirements elicitation,
analysis, specification, verification, and management (Fairley and Thayer 1997,
Sommerville and Sawyer 1997, Sutcliffe and Maiden 1998); (1) design analysis, which 1s a
process that is concerned with how the system functionality 1s to be provided by the
different components of the system (Sommerville 2000); and (1) znfegration and festing,
which is a process of taking reusable components then putting them together to build a

complete system, and of testing if the system 1s working appropriately.

Requirements Engineering

The activity of tequirements engineering tocuses on identifying, colleting, organizing and
representing requirements of a product member. The major difference between
chat

rr:quitem{iﬂts enginaerﬁng of an individual prmduct and a pmduct member 1s

stakeholders not only tocus on the speciﬁc: pmduct but also on the scope of nroduct line.

i

Technically, the requirements of product members are defined and scoped under the

domain of the product line’s requirements. A variabﬂjty point of a requirement 1s bound

with a variant for a particular product member during requirements engineering.

Design Analysis

Design analysis in application engineering must be consistent with the concept of design
analysis 1n domain engineering. This activity is to analyse and design the architecture for
a product member. Software product line architecture is refined and specialized for a
patticular product member. The software architecture of the product line is configured to
fit for a product member based on the specific product’s requitements. The

configuration includes the addition and removal of designed vamability points of the

product line.

In (Bosch 2000), architecture pruning is an activity that the common aspects of software
product line architecture is collected and the variable aspects for a specific product
member are specified. The composition of common and variable aspects acquires the
software architecture for a specific product member. Nonetheless, it is possible that a
software product line architecture does not fulfill the complete design of a specific
product. This needs an activity called architecture extension (Bosch 2000). The activity

extends some aspects that are not included in the software product line architecture.

Integration and Testing

The usage of the core assets of product line and development of product members
mnvolve the following three steps: (i) discovering a set of reusable components for a
specific product member; (1) instantiating the variability points of the reusable

components for a specific product member; and (i) integrating and testing the reusable

components tor the product member.

2.3. Methodologies for the Development of Product Line Systems

In this section, we describe existing methodologies to support product line system
development. In particular, object-oriented methodologies have been common and
popular 1n the development of software systems. Many existing object-oriented methods
are aimed at supporting the development of single software systems. Recently, some
object-otiented methods have been extended and proposed for the development of

product line systems. We desctibe below the methods and approaches for product line

system development in the object-oriented paradigm.

COPA

Component-Oriented Platforn Method (COPA) (America et al. 2000) is proposed for product
families of software-intensive electronic products i.e. telecommunication, medical
imaging, and consumer electronics. COPA defined architectural and process frameworks. The

architectural {ramework consists of five views:

() Customer view — the view shows customer business models represented in

customers Ianguﬂge or textual language.

() Applecation view — the view shows application models represented m UML

diagrams

() Functional view — the view shows functionalities and petformances of svstems
represented 1n use cases

(v) Conceptual view — the view presents plafform and product-specific components created
for product line and product member, respectively. In COPA, construction
components are applied with some component-based techniques such as COTS,
Microsoft’s COM component model, Sun’s JavaBeans, and OMG’s CORBA.

(v) Realization mew — the view illustrates specific techniques e.g. hardware

ntrastructure, hardware platform, operating systems. These are specified in a textual

lan guage.

The process framework consists of three main activities:
() Product family engineersng — rthis acuvity 1s driven by policy and plans of an

organisatton. There are sub-activities during product family engineering such as

L7

domain modeling, requirements formulation, and commercial and technical design.
These activities construct customer, application, and functional views. The
architecture of product line is created during product family engineering. For
example, COPA applied Koala for representing the product family architecture.
According to Figure 2-1, this activity can be comparable with the domain analysis
and domain design during domain engineering.

(i) Platform engineering — this activity is concerned with technology and people
management. Sub-activities can occur during platform engineering such as standard
development, cooperating between stakeholders in product family engmeering and
product engineering to comprehend requirements of product line and product
members, integrating and testing for product members, and maintenance of existing
reusable components and platforms. This activity has sub-activities that are
comparable with domain engineering mcluding domain ﬁﬂalyéis, domain design, and

domain implementation as shown in Figure 2-1.

(i1l) Product engineering — this activity is concerned with the customer-otiented process.
There are sub-activities duting product engineering such as standard development,
cooperating with customers to understand specific requirements, constructions of
product members, and maintenance and suppotzt for product members. According to
Figure 2-1, this activity can compare with application engineering including

requirements engineering, design analysis, and integration and testing.

In the COPA method, the authots suggested the activities in software product line
engineering and artefacts created during three activities. The artefacts are represented in
UML diagrams, use cases, textual language, Koala language (Ommering et al. 2000), and

CDlTlpDHEIlt-bﬂSEd reptesentation languages.

QADA
Ouality-driven Development of Software Family Architecturer QADA (QADA) 15 a quality-driven
architecture-centric method for product line system development. The QADA method

described the d(ﬂ-"ﬁleﬂlEﬂt of software pmdu{:t line architecture. The method includes

Ave activities:

18

() Reguirements engineering — this activity is aimed to capture and analyse requirements
and context model. The requirements i.e. functional and non-functional requirements
and context model ie. hardware and software interfaces of a system, a set of
constraints, rules, and standards are represented 1n textual language.

(i) Concepinal architecture design — this activity is aimed to identify a conceptual
architecture which is represented with three views namely, structural view, behavior view,
and deployment view. The structural view is concerned with conceptual EGlﬂ?DHEﬂtS
and their relationships. The structural view is composed of three types of artefacts:
(a) list of functional responsibilities represented in textual language; (b) table of non-
functional requirements fepresented in text and table; and (c) decompositon model.
The behavior view is concerned with dynamic actions and kinds of actions to which
a system produces. The behaviot is represented i a collaboration model. The
deployment view is concerned with allocation of the c:}ﬂcepmﬂl components into
hardware components. The behavior is composed of two types of artefacts: (a) table
of deployment units represented ifi text and table; and (b) allocation model. Another
type of artefact generated during conceptual architecture design is desigr rationale
which represents design principles and rules.

(iit) Conceptual architecture analysis — this activity focuses on qualities, commonality, and
variability of a system. Three types of artefacts are created namely: (a) product line scope,
which represents a boundary of product line; (b) faxonomy of requirements, which
describe syntactic architectural notatons and are reptesented in domain models,
relevant architectural views; architectural styles; environmental assumptions and
constraints; and trade-off rationale; and (c) &nowledoe base, which allows the evaluation
of collections of architectural styles and patterns in terms of both quality factors and
concerns. The knowledge base in QADA contains materials, quality attributes,
questions that describe the evaluation of artefacts.

(iv) Congrefe architecture design — this activity focuses on providing a set of concrete
software components and definition of interfaces between components. The activity
is concerned with three views in the activity of conctrete architecture design
(structural view, behavior view, and deployment view). Firstly, the list of functional,
non-functional requirements, and decomposition model from the conceptual

architecture is desioned and refined as struciurdl diagrems that represent concrete

—

19

components, interfaces and relationship. Secondly, the collaborative model from the
conceptual architecture is defined and refined as stafe diagrams and message sequence
charts. Thirdly, the table of deployment units and allocation model from the
conceptual architecture are designed and retined as deployment m0del

(v) Concrefe archifecture analysts — this activity 1s aimed to assess aud evaluate the
software product line architecture regarding expected changes. The analysis method
consists of five sub-activities: (a) derrving of changes from the product line SC(-:}pE; (b)
defining product-line architecture description; (c) defining scenario identification; (d)

evaluating the effect of scenarios; and (e) 1dentifying scenarto interaction.

[n the QADA method, the activites of domain engineering are defined. More
specifically, the activity of requirements engineering 1s comparable with domain analysis
in Figure 2-1, and the activities of conceptual architecture design, CIC}HCEPT_'HHI architecture
analysis, concrete architecture design, and concrete architecture analysis are comparable
with domain design i Figure 2-1. However, the QADA method does not cover an
activity of application engineering in Figure 2-1. In addition, artefacts created during

theses activities are represented by usiﬂg textual laﬂguage and UMIL, diﬁgmms.

KobrA

Koor- (Atkinson et al. 2000) 1s a component-based method for software product-line

engineering that 1s developed by Fraunhoter IESE. In the KobrA method, the authors
proposed a Komponent as a set of reusable components that satisty a requirement or group
of requirements. The Kobra method is divided in two main activities: (1) framework
engineering, which defines a set of Komponents; and (11) application engineering, which applies

extsting Komponents and constructs a product member.

Framework engineering consists of four activities, namely:
o R | . o & * el s
(1) Context realizafion — the aim of this activity 1s to define properties and scope ot
product line. The business process models, which describe the requirements and
constrains of product line, and decision models, which describe common and vamable

tffquijrtzmeri[s ot prudu{:r line. are created.

i
(2

(1) Komponent specification — the aim of the activity is to describe properties of a
Komponent. The structural model, which is represented in UML class diagrams,
behavioural model, which 1is represented in UML statechart diagrams, functional model,
which is represented in Operation schemas, and decision model, which is represented 1n
a textual language, are created.

(1) Komponent realisation — the aim of the actvity is to define the design of a
Komponent. The feraciion model, which is represented in UML cmﬂﬂb{:}mm}ﬂ
diagrams, strictural model, which 1s represented in UML class diagrams, activety model,
which 1s represented 1 UML activity diagrams, and decision model/, which is
represented 1n a textual language, are created.

(1v) Component rense — this activity focuses on applying existing components to develop

new KKomponent.

Application engineering consists of two activities:
() Context realization instantiation’ — the activity is aimed to identify relevant
Komponents to be reused fora product membet.
(W) Framework instantiation — the activity is used to cteate a framework of a set of

Komponents and relationships between those Komponents for a product member.

IThe Kobra method 1s defined to complete the activities in the development of product
line systems. More specifically, the actuvittes of context realization, Komponent
specification, Komponent realization, and component reuse are comparable with the
activities of domain analysis, domain design, and domain implementation as shown in
Figure 2-1, respectively. Moreover, the activities of context realization instantation, and
framework instantiation cover the activities of application engineering including
requirements engineering, design analysis, and integration and resting in Figure 2-1.
Additionally, the method 1s systematic, scalable and practical for the development of
product line systems. The artefacts created in the method are based on UML diagrams

and rextual Iﬂﬂguﬂge that are customised to fulfil the activities in the domain of 'Irjrc_?.-chlci'

line systems.

21

PullSE

Product Line Software Engineering (PuLSE) (Bayer et al. 1999) 1s a customizable software
product line engineering approach. The PuLSE method consists of four main activities:
(1) Inztialisation — the activity is aimed to analyse and evaluate a situation of an
organisation.
() Infrastructure constriction — the aim of this activity is to define a scope and processes
of product line. A scope model and definitions of product line are created.
(i) Infrastructure usage — the aim of activity is to define and create product members.

(iv) Evolution and management — the aim of activity is to evolve the product line.

The PulLSE method consists of six technical components and three suppott

components. The technical components are: (1) PuLSE-BC, which 1s used to supportt the

— -

I_|J_ '_r..-{:{}

b

analysis and evaluation of an organisation in the mitialisation activity; (1) Pul.S]

which is used to suppott an economic analysis of product line; (1) PulLSE-CDA, which

is used to support a domain analysis of product line; (1v) PuLSE-DSSA, which 1s used to
support a2 domain design of product line; (v) PuLSE-I, which is used to support the
development of product member; and (vi) PuLSE-EM, which is used to suppott the

evolution and management of product line.

The support components are: (1) project entry points, which are used to support analysis ot
an otganisation’ situation; (i) maturity scale, which are used to support evaluation the

adoption of product line; and (1) orgamzation issues, which are used to support

maintenance of prr:}duct line.

PulLSE defined the framework of components conducted by different activities. The
activity of initialization is comparable with domain analysis 1 Figure 2-1. The acuvity of
infrastructure construction has sub-activities in common with domain analysis, domain
design, and domain implementation. Moreover, the activity of infrastructure usage 1s
comparable with application engineering including requirements engineering, design

analysis, and integration and testing as shown in Figure 2-1. In addition, software product

line architecture and other artefacts 1n product line are represented as a szt of prescribed

cmmpﬂnents-.

FAST
Family-oriented Abstraction, Specification and Translation (FAST) (Weiss 1995) 1s a software

product line method that initially described two main activities 11 software product line
engineering. The activities, which resemble the main activities depicted 1n Figure 2-1, are:
() Domain engineering, which defines product line and the cote assets of the product
line; and
(i) Application engineering, which develops product members by using the core assets

of the product line.

FAST describes a domain specific language AML (Application Modeling Language) tor
specifying the requirements of product line. The requirements of product lne

represented in the language are then specialized for product members. However, the

definition and specification of requirements ate restricted.

RSEB

Reuse-Driven Software Engineering Business (RSEB) (Jacobsonet al. 1997) 1s proposed
to focus on achievement of business goals and improvementof business performance. In
(Tacobson et al. 1997), they proposed to apply use cases to describe reference
requirements of product line and UML diagrams to describe the software product line
architecture. They also defined activities in the development of product line systems:

(1) Reguirements engineering, where variability 1s specified as use cases;

(11) rehitectural family engineering, where the software product line architecture 1s

created in UML diagrams;

(iit) Component sysiens engineering, whete reusable components are developed; and

(iv) -Application system engineering, in which product members are developed.

ure 2-1. More

o

The activities defined in RSEB are comparable with ones shown in Fi

J

spectfically, the actvity of requirements engineering in RSERB 1s concerned about domain

-2
Lad

analysis and requirement engineering defined in (Clements and Northrop 2004). The
activities of architectural family engineering, and component system engineering have
likewise sub-activities in domain design and domain implementation, respectively.
Moreover, the activity of application engineering 1n RSEB covers the activities of design

analysis, and integration and testing as shown in Figure 2-1.

*

SPLIT

Software Product-1ine Integrated Technology (SPLIT) (Coriat et al. 2000) 1s a systemic approach
for the development of product line systems. SPLIT suggested a life-cycle of the
development process which consists of two activities. The activities, which resemble the
main activities depicted i Figure 2-1, are:
(1) Domain engineering, which reference requirements, software product line
architecture, and reusable components are created; and

() Applzcatzon engineering, which product members are developed.

There are four approaches applied i SPLIT:
(1) The approach «called SPLIT/Clond is applied to develop the reference
requirements of product line systems. In this activity there are artefacts created:
business process, capability, functional area, force, functional requirement, and non-
functional requirement. In SPLIT, they described two situations of requirements
engineering: the first one is the development based on existing products; and the
second one 1s the development from scratch. The product line system development
based on existing products consists of activities: (1) define reference requirements 1.e.
functional and non-functional; (1) identify and organize the requirements of each
product member; (m1) define artefacts that represent high-level views of functional
requirements ot each product member; (1v) define artefacts that represent high-level
views of non-functional requirements of each product member; (v) map high-level

views Of functional and non-functional requirements to the reterence requirements

The product line system development from scratch consists of activities: (1) define

the domain of product line; (i) scope the domain; (1) identity the requirements of

PJ
N

the product line; (iv) determine COTS used in the product line domain by applying
with COTS model; (v) define reference requirements ie. functonal and non-
functional; (vi) define a business process; (vil) define capabilities related to each

business process; and (viu) define forces related to each non-functional aspect.

(11) The approach called Dazsy 1s applied for developing software product line
architecture. In Daisy, a software system product lne architecture (SSPLA)
description 1s based on three architectural views: (a) business view; (b) subsystem
view; and (c) technology view. The business view represents subject area and analysis
pattern. The subsystem wiew represents subsystem, architectural pattern, process,
architectural guidelines, architectural constraints and mnformation. The technology

view represents component model, computing mnfrastructure and deployment. The

views are represented in UML diagrams.

(1) The approach [adderis applied for developing reusable components. In Ladder,
they suggested the transformations, composition, splitting up, abstraction,
refinement, development branch for reusable components developinent as well as

COTS adaptation.

(tv) The approach Wheels 1s applied for supporting sub-processes during domain

engineering and application engineering in SPLIT.

The SPLIT method is applied in ESAPS (ESAPS) and CAFE (CAFE 2003) projects. The
method itself 1s composed of other methods to support each activity in software product
line engineering. Otherwise, artefacts produced by using these methods are represented

n r.e. UML diagrams, use cases, component-based representaton languages.

Additionally, the concept of feature-ortentation is not completely new i software
engineering and there have been efforts to apply the concept of features to express
aspects of a software system. Examples of feature-oriented methods are FOUD A (Kang et
al. 1990), FORM (Kang et al. 1998), and FearuRSEB (Guss et al. 1998}, which are

increasingly i.mp(ﬁ‘ﬁttﬂﬂt to software pr:::du-::t line cﬂgﬂmﬁﬂng due to several reasons:

(i) The fact is when developing the product line, stakeholders communicate with

each other in terms of prc}duct features. It becomes an effective media of

communication between customers and system developets.

(ii) Due to a large size and diversion of requirements for product line systems,
specifying and representing the requirements becomes primary tasks 1n domain
analysis as these activitles are supported by the feature-oriented methodologies.

(iif) Features can be used as the basis for analyzing and representing commonalities
and vatiabilities of product members under the same product line. Additionally, the

feature-oriented methodologies offer a way to classify vatious requirements.

FODA

Feature-Oriented Domain Analysis (FODA) (Kang et al. 1990) is proposed to support the
activity of domain analysis. In FODA, the activities are described and cover the activity
of domain analysis depicted in Figure 2-1. Three activities are:
@) Domain analysis, which focuses on scoping of product line and identifying product
members;
(i) Feature analysis, which develops a list of common and variable aspects of product
line; and

(i11) Feature modelling, which models the common and variable aspects as « fealire model.

FODA is an initial method that defines a feature model for representing common and
variable aspects of product line. Identification of features requires domain knowledge
obtained from the domain experts and other soutces such as books, user manuals, design
documents, etc. In FODA, the authors described that domain experts and system
analvsts can use standard terminologles to communicate with each other in mature and
stable domains. Therefore, analyzing the domain terminology 1s an effective and etficient
way to 1dentify the features of a given domam. However, in prior to feature
identification, standard terminologies and domain Scmpe should be done since they are
not available in immature or emergent domains. Feature models are used as a mechanism
to facilitate different perceptions of domain concepts and scope which cause confusion

between stakeholders.

26

The authors defined three types of features: () mandatory features, which represent the
commonality of product line; (i) a/fernative features, which are specialized for product
members; and (ii1) opfional features, which may or may not exist in product members. The
feature model consists of elements such as: (a) a #ree-structured diagram which represents
characteristics of product‘line; (b) a definition for each feature; and (c) composition rules
which are defined rationally between features. There are two types of rules: (1) one

feature reguires another feature: and (ii) one feature is zzc/uded in another feature.

FORM
Feature-Oriented Reuse Method (FORM) is an extension of FODA that provides the

activities of domain analysis and the development of core assets. Three activities are

concerned:
(1) Feature modelling — that is a process for defining features of product line systems.
The authors proposed to apply the extension of the feature model from FODA for
representing features. They proposed the classification of with respect features to
their purpose as: (a) a set of capability features that express the charactetistics of
distinct services, operations, functions, or performances, (b) a set of operarng
environment features that represent attributes of the envitonment i which an
application is used and opetated, (c) a set of domain rfechnology teatures that represent
the domain of realization (e.g., navigation methods in the aviation domain), and (d) a
set of implermentation fechnigue features that represent implementation details at lower
and more technical levels e.g. abstract data types and sorting algorithms. Kang et al.
pointed out that a domain technology feature is more specific to a given domain and
mav not be usable in other domains while an implementation technique feature is
more generic and may be used in other domains.
(i) Architecture modelling — that is a process for defining software product line

architectures. Artefacts created during this process are viewed a hierarchy and

consists subsystem nodel, process model and module model. These models are represented

the commonality and variability of the product line.

(it) Component engineering — that is a process for defining reusable components. In (Lee
et al. 2000), the authors described the technique used in the activity of component
engineering in the FORM method. The authors described principles for the creation
of reusable components by mapping features created during the activity of feature
modeling. The principles are (a) capability features can be modeled as an object ot
oroup of objects that provide a similar set of operations. The object or group of
objects is specified with a parameter for a particular product member; (b) operating
environment features can be modeled as an object or group of objects that provide a
set of operations for different requirements of product members; (c) domain
technology features are modeled to be specific for the domain of product line; and
(d) implementation technique features should be used to implement domain-specitic
objects. For example, a communication method feature (e.g. synchronized or
asynchronized communication) depends on the implementation languages or

platforms. However, the mapping of the feature model and product member is not

described.

In the FORM method, the activities of domain engineering are defined. More
specifically, the activities of feature modeling, architecture modeling, and component
engineering have likewise sub-activities in domain analysis, domain design, and domain
implementation defined in (Clements and Northrop 2004). However, the FORM method

does not cover an activity of application engineering.

FeatuRSED

Featuring RSEB (FeanRSEB) (Griss et al. 1998) 1s a combination of RSEB method
‘Campbell et al. 1990) and FODA (Kang et al. 1990). The FeatuRSEB method includes
’ 5
the activities defined in RSEB which are requirements engineering, architectural tamily
engineering, component system engineering, and application engineering. The method
adapred using a feature model by adding UMil-based relationships i.c. dependency and
refinement. The feature model is used to represent common and variable RSEB models.
vords. the feature model 1s used to represent an assoctation between RSED

[n other w

models in }jr{jducfz line.

1)

i1

2.4. Summary

This chapter has provided background information for product line systems. It has
presented the terminologies, existing problems, cutrent approaches and current

techniques in the domain of product line. In the next chapter, we present a model for

software product line specification.

Chapter III Software Artefact Specification for
Product Line Systems

%,

This chapter describes an approach to software artefact specification for supporting
product line systems. The approach includes the types of documents represented
software artefacts created during the phase of domain analysis and domain design
(according to Figure 2-1) are‘defined in Section 3.2 and Section 3.3 respectively. The
summarty of the approach is also given in Section 3.4. Section 3.5 summarises of the

chapter.

3.1. Introduction

According to the literature and survey of techﬂiques which are ﬂpphed by organizations
in Thailand, we present the approach to software artefact specification for product line
systems that 1s suittable to software development. Our wotk concentrates on documents

cenerated duting the phases of domain analysis and domain design.

Particularly, the approach includes two main essentials: (1). the types of documents
represented software artefacts created during the phase of domain analysis; and (1) the

types of documents represented software artefacts created during the phase of domain

desigﬂ.

Addidonally, we believe that a feature-based object-otiented engineering approach is
required when developing product line systems. A feature-based approach 1s important
to support domain analysis and domain design, enhance communication between
customers and developers in terms of product teatures, and assist with the development
of software product line architecture. On the other hand, an object-oriented approach is

necessarv to assist with the development of the various product members. As the

following section, we elaborate the idea of applying featured-based objected-oriented

engineermg ﬂppma{:h. We describe each type of software artefacts.

3.2. Requirements Artefacts

The reference requjrementa created during the domain analysis phﬂse is represeﬂted by

feature model (Kang et al. 1998) and use case (Cockburn 1997). In the following, we

described the details.

3.2.1. Use Case

Use case is a textual specification language that captures a contract between the
stakeholders of a system about its behavior (Cockburn 1997). Examples of the
approaches proposed to apply use cases in the activities of product line system
development are (America et al. 2000, Griss et al. 1998, Jacobson et al. 1997). In our
work, we represent the functional requitements of product line as use-cases by adapted
the template proposed in (Fantechi et al. 2004). The authots proposed to express the
requirements of product line systems by extending the use case definition given by
Cockburn (Cockburn 2000). In particular, the vagability is expressed in use cases by
using special tags. The tags indicate the variable requirements of pfoduct line that need
to be specialized for a product member. They proposed three types of tags:
() alternative tag, which represents vatiable requirements with a predefined set of
requirement variants;
(i) parametric tag, which represents variable requirements that requires the instantiation
of specific parameters for a product member, and

(i) opfional tag, which represents variable requirements which may or may not be

instantiated for a product member.

In our template, a use case is composed of:

(1) Use_Case — the clement consists of three attributes, which are mformation of the

us€ Case.

(a) Use_Case D — this attribute 13 identified as a use case;

31

(b) Systens — this attribute specifies which domain of product line 15; and

(c) Product_Member — this attribute specifies for which product member the use

case 1S Speciﬂad.

(2) Existential — this element 1s used to represent the existential of a use case. It
consists of an attribute Cowmmonality VVariability — this attribute can be (1) mandatory,
which indicates a use case must be satisfied by product members; (1) a/ernative, which
indicates a use case must be satisfied and altered for particular product members; and
(i) optional, which indicates a use case may or may not be satisfied by a product
membert.

Moreover, in the case that the attribute Commonality _Variability 1s specified as
“qlternative”’, the element Existential can consist of sub-element Variant_Point. The
element arant_Point specifies a patticular point of the use case’s variability. The
element [ariant Point can consist of a sub-element either Variant or Parameter. The
element Variant specifies a set of alternatives for the particular variant point, as the
element Parameter specifies the domain of the [ariant Pornt. Note that in the case that

the attribute Commonality Varability is either mandatoty or optional, the element

Variant_Point may not exist.

(3) Title — the element [z7 1s the title of use case.

(4) Description — the element Deserspzzon s specified for a brief textual description.

(5) Level — the element describes the level of functionality that it desctibes within a
system.

(6) Preconditions — the element describes the conditions that must be satisfied before
1ts executton.

(7) Postconditions — the elements describes the conditions that must be saustied after
Its execution.

(8) Primary_actors — the element specifies primary users of the use case.

(9) Secondary_actors — the element specifies secondary users of the use case.

(10) Flow_of_events — the element specifies a list of the events that trigger the use case

ind the S’[)E.Ciﬁﬂﬁti@l’l of the normal events that occur within 1it. The element

Flow_of events consists of the sub-element Event, which specifies a particular event

beiﬂg preceded in the use case.

(11) Exceptional events — the element describes the events that do not always occur

when the use case is executed.

(12) Superordinate use case — the element specifies a use case for which the use case

1s elaborated. "

(13) Subordinate use cases — the element specifies a use case to which the use case is

specified.

Figure 3-1 tllustrates an example of a use case Sending a Message from a mobile phone for
product member PM1 of the mobile phone case study. The use case is identified with
UseCaselD (“UCT”), Systern (“MobilePhone”), and Product_Menber (“PM1”). The use case
contamns Exustential element which Jts attribute Commonality Vanﬁbz‘/z’{y 1s specified as
“Alternative”. The sub-element Varaint Point (“v17) is declared along with the sub-
element Variant which includes a set of possible values for »7. It also contains elements
re. litle, Description, Ievel, Preconditions, Posiconditions, Primary_actor, Secondary_actors,
Flow_of events, Exceptional events, S uperordinate_iuse case, ~and Subordinate _use case that

describe the context of the use case

Use_Case UseCaselD="UC1”
System="MobilePhone”
Product Member="PMI1”

Existential Commonality Variability = “Alternative”

Variant Point vl
Variants vl {keying-in a phone number of a receiver, selecting a phone

number from a list of contacts}
Title Sending a Message
Description The phone is able to send a text message. The user can specity an
address of a receiver by selecting from a list of contacts.

Level User Goal
Preconditions The user has already selected function of sending a text message

from the main menu.

Postconditions The phone has sent the message.
Primary actor Theuser

Secondary_actors -

Flow_of_events
Event 1 The system shows an editor for writing a message.

Event 2 The user inputs a phone number by [v1].
Event 3 The system displays the phone number to which the message 1S being
sent.
Event 4 The user enters the message and confirms sending the message.
Event 5 The system sends the message and displays an acknowledge on the
screen.
Exceptional events -
Superordinate_use_case —
Subordinate use case —

Figure 3- 1: Use case Sending a Message

3.2.2. Feature Model

A feature model is a software artefact that describes the abstraction of domain knowledge
obtained from domain experts such as system users, analysts, and system developers, as
well as other sources such as boolks, user manuals, design documents, and source
programs. This technique was initially proposed mm FODA to assist the activity of
domain analysis. Many approaches apply and extend the definition of a feature model to

support the development of product line systems. As the following, we summarise

different aspects of the feature modeling technique being applied in those approaches.

LIBRARY AND INFORMATION CENTER
DHURAKIJ PUNDIT UNIVERSITY

L=

CL

oD

34

Types of Features in a Feature Model can be (1) zandatory features (Bosch 1998, Clements

and Northrop 2002, Gtiss et al. 1998, Kang et al. 1990, Kang et al. 1998, Pul.SE, Weiss
1995) are compulsory for product members in a family; (1) optional features (Bosch 1998,
Clements and Northrop 2002, Griss et al. 1998, Kang et al. 1990, Kang et al. 1998,

PulSE, Svahnberg et al. 2001, Weiss 1995) may exist in a specific product member or

not; and (11) allernative jégm;w (Bosch 1998, Clements and Nosthrop 2002, Kang et al.

1990, Kang et al. 1998, PuLSE, Weiss 1995) or variant features (Griss et al. 1998), are a set

of possible features that can be selected for a specitic product member. Moreover,
(Svahnberg et al. 2001) define a feature type excternal features that is a feature unavailable
in a system but needs to be satisfied by an external system.

Notations of Featufes in a Feature Model can be different. As shown in Figure 3-2, a
featute may be depicted as a round or a rectangle with itsl name inside. Many
approaches applied the feature notation defined m (Kang et al. 1990). However, some

approaches applied a UML class diagram for expressing features, for example (Guiss et

al. 1998). Moreover, different types of a featute i.e. mandatory, optional, and alternatve

are represented in different notations.

Mandatory Optional Mandatory

Mandatory Optional

= / |
3 i \\ : Feature :

| P IV ! T | S =L T e (ot
/ External
Feature

@ —
Alternative

Alternative

(2) (b) (c)

Figure 3-2: different notations for different types of a feature: (a) (Kang et al. 1990); (b)
(Griss et al. 1998, Kang et al. 1998); and (c¢) (Svahnberg et al. 2001)

Ideally, fearures are atomic units that can be put together 1 a product without difficulty.
However, features are generally not independent and several types of relations can exist

between them. According to (Gibson et al. 1997), feature interaction 1s defined as a

e
LN

characteristic of a system whose complete behavior does not satisfy the separate
spectfications of all its features. The types of relationships express the rules of feature
interaction. These relationships are considered when features are selected for product
members. They represent which features must be selected together and which features

must not. Table 3-1 shows different types of relationships between features.

%

Table 3- 1 presents the classification of relationships between features:

Relationship type Description

aepends-on (Griss et al. 1998) Indicating that a feature relies on an existence

of another feature

mutually excinsive (Griss et al. 1998) | Indicating that two features must exist at the

same time

confizeting (Griss et al. 1998) [hustrating that related features have

conﬂicting requirements.

composed-of (Kang et al. 1998), | Indicating that a feature is composed of other

compositon (Svahnberg et al. 2001) | features

generalization/ specialization (Kang et Indicating that a child feature 1s specialized
al. 1998), OR specialization | from a parent feature

(Svahnberg et al. 2001)

implemented-by (Kang et al. 1998) [ndicating that a feature 1s umplemented by

another feature

XOR specialization (Svahnberg et | Indicating that children features are mutually |

al. 2001) exclusive |

Our approach, we extend the feature model proposed in FORM (Kang et al. 1998)
which 1s based on the feature model proposed by (Kang et al. 1990). More specifically,
the authors enhanced the feature model with a textual specification for each feature.
Our feature model describes the requirements artefacts of a product line system and

llustrates the features available in the line. Figure 3-3 presents an example of a graphical

(

hierarchy of feature for a mobile phone product line, while Figure 3-4 presents an

example of a textual specification for feature Text Messages.

As shown in Figure 3-3, a feature is represented by a name and can be (i) mandatory,
when it must exist in the applications in the domain; (ii) gptional, when it is not necessary
to be presented in the applications in the domain; or (i) a/fernative, when it can be

selected for an application from a set of features that are related to the same parent

feature 1n the hierarchy.

The features can be classified into four groups namely (i) application capabilities, signifying
teatures that represent functional aspects of the applications (e.g. calling, connectivity,
personal preference, and tool features); (i) operating environments, signifying features that
represent attributes of the environment in which product meﬁbers are used and
operated (e.g. network, input and output methods, and operating system features); (111)
adomain lechnologres, signifying features that represent specific implementation and
technological aspects of the applications n the domain (e.g. WAP and NHTML!
browser types; specific Java application support like mobile media and wireless
messaging application programming interface; SMTP, POP3, and IMAP42 nerwork
protocol features); and (1v) implementation techniques, signifying features that represent
more general implementation and technological aspects of the applications, but not

necessary specific for the domain (e.g. PGP and DES encryption methods; AMR,

MIDI, and MP3 sound formats; and 3GPP and MPEG? video format teatures).

=

Feature can also be related by different types of relationships. Exaniples of these
relattonships are (1) composed of, (W) generalisation/ specialization, and (iii) iuplemented by

relﬂtifmship types.

L WAP: Wireless Application Protocol; XHTML: Extensible HyperText Markup Language.

= SMTP; sunple Mail Transter protocol; POP3: Post Office Protocol; IMAP4: Internet Message Access Protocol.

3 AMR: Adaptive Muiti-Rate; MIDI: Musical Instrument Digital Interface; MP3: MPEG Audio Layer HI; GPP: “rd
(reneration Partnership Project: and MPEG: Moving Picture Experts Group.

a7

| Mabids phone _]
n'd""_.-‘_.__.r'_"-; t:::_‘"“--u-____ ; 5

—
...—-—"""'-'_ A H
e ,..—"'r ™~ H““h—;._ : o i
R - e, Al :;..; L
--'.r—""‘"*-r___ __,.-"' \‘1\'\1 ‘-HH‘-H-H""-___ p—— L -mf"“_hdhn_- ...-"";- RM{_“—H_“_' i o
.".,pp;u;;g’&gr f:LtﬁEDhiillHE ,..--""""-" _,*"’fj o S { Colanclar i AT ' " --'-'._-_;:...._._,,, T N
I-'_'_"’.-'_Fr- o 1 e S — (_._,r"" d 2 [Sk et
- .-"'J -HH'" : T o o~ F ‘L?:.. ;
I""'-HII'I'-‘.‘_U.!I 2 i Persoral A Gl o o e "
AR | o ; ondating : { Railloe Ifnrw 1
st oo { ' 1 5 !
1 J_,.a-" i Pretererce | "‘:i._ 2 L,
ol e g Cooeal Camera
ol B A

L i daipatad o s b T —— . SR o ANl
.-..-'"i- ‘ [I-..-" w [H{ |tl'. || | '-‘--'-._i_.,..-'-"-"'_"-'-l'J f \l‘ \\':‘:\ .‘H_‘-q,-‘__‘_\-‘- _‘\-_n“ H ..h. 1 . l\.; tt-‘:m"w“! r:ll J'II-l_Jlth.r

_-"--‘ f"'j
nnnnnnnnnnnnnnnnnn r W . . ;o p o = f _1- .,\. 1"-., s i f
[M Akl “ ”F] i i T e i [Hﬁ E’ﬂ:ﬁ"m] / % e b | Taking a phaic e St
E FReterningnoal oon - : : E Saumy I{ : i u,.""x AR playe |
: ; ; : : . B e N WO e S . i
' ' 5 j Watipaper PoA s AR £ e T TN
......................... - Tar ! iy i [Tz -
: i ; : | Clack 5 ! | Tl = = =l m o \
. -0 s oo Beling r BLTEen ¢ < k T E e _ e __
mmmmmm - !-flm.-\.-.l.n.'\.-m: #rwv‘g'd':-wwm 1."-. _\-"""—\-._._ Y qﬁﬂr':"! : [A CH z & rli'irl‘ : rE .,,.,"1"I-l.?l' | F}I'ttlj:ll;l? |
:_ Eliagtith | j irfrare N] > D W i x 3 . - | J
N ~ Barcing Damvia USH | - 4 A
i b 1-""'.# f A - :}_ , “u
i b . = = % & .
A % &t P Recinarg Cat vis UER | WAP | = i
. i & I I S] r \
Serdrg Dam Jending Dala | [Receiving Oata ,-#“’TFFIIE‘%:‘-"-T—:::;—-.% P _ :
v ahletiooth | | Ad |nfrired | } W infareg e i L o "*—u-q..__:_"::‘“:——-..__‘_'____._- P 5 l i J
I E L _...n'\--__.-—-—"-"_r.- J-i_....--""" -""-_,__ -_"H“_'-'“u..- u_-.*_""'"“"\-w—.._..\“_ -~ “_:" B .II
-I e . F . -\-“‘1-......... ks H—.‘_‘_'q...._. : .‘_.:-.m'.':::ﬂ-.-_. PR, -
ecerinn Deta | Recewin: o " P ! ey - e 2
FTIPEJ:::IH;':E:[:‘H i i PIHHQ%?-:?HM : Al i ViEWinyg i Browsing WaH Savirs WA }’J PAMREE o nneanion : :
Wl -'l.-r':".r:.l' 1 1] H e E - - l) L~
; , + P Dookemark [Gookeark Pages Pages - Sueunty
| P P S TR ey T B e A L L L L R i = o s B LT :?.-urh. -------------------------------------
; g " d Phione Hook |
IT::H{E:JEQ I-EF‘:'I!n-jnrr'Ei T b B i e o Sl B L AL A, T L S R UL P e e 'F-:'\-'!'\-I'\-"r\-'l-'\-ﬂ'\-'\-'\-l-'\- i o ’lr LM MMF%M:’ i "l
: f + LT o] : % A !
R Wik A Sutour Methiod | Oofratrg system | i - e 1 [TEERRET
o S -~ o o B T 2 O 54 w7 Massapes - {F Bl |
o . B . - it e) A s
2 1@“ 425 - s e Device irlerans =y : .
\ :"'IJ 3 - : . . + i1 ok AL L iy . 1_-_."-1—“...-.- e =
‘ : ey # g . . B 7 ” Remeaving | : | Recmairg
_.\,..-...l::..-. Pkl r . 4 2 ; K r = " ; i 2 N PRTTPrTr detmearanei vl
F GPRS — [huroptors [Lo | Bymbiar | T 5 - : 3 [Forrics
O i e | S5 3 o~ ———— i { er | el S : . - ;
K v . o s ey k i - " : - - £ — . v]
""'H._..' * .IE l."':?:r'\"ut‘; Er PR pas R E’Ermlﬁ1ﬁ - -) L i E ¢|th!] i:'u'nl\.-.p-'\-f::\m-'-'\.wm
: R 5 SEren - £ —~ " = LE
. e — — : - s .,r':_ J-- k S ::ﬁmn. e
et R D 3 1 Canana ,i.;ﬁluemmh ; riranes *"’ | Mirsiages |
e s i L R A - - X
] .':_'_1_ oo ! ramn ; o y o - - l'frlll.
<t . ; ranhic sereens 5 Polexlsciaern |0 T - - | oLy | 4 Le. 2 _.r' \
= = tic screen | | - 4 Q... AN
Diomzin wehrology s i ; oo s soermsooepece oot T* ey A]
et .’% ! s " 4 E Alwrms | S | F(m:;_ 5
- - | . X " -". " S .‘r i
L - _-!“.LFTL AR P Heiwark protosd § 4 [HEat - et / | Tt
i ' T il
v My --"I i l'* T - &
| Browser SR , ! | Feature : T hgang | Messages
...... ot '| fEohile ; iy e " I i i 1| 4 PR | | Phoios el ,1
1 rehis ABE | - l“f.-."-mh:;l W) G L : prrre vy | TENE /] | e |spe.; me |1
e et M i - 4 T " PR |
| YA F3] ,IF |TJ".|"! 4. n - -~ - : 1\._‘_ H 'r'-:ié_Eldz' ._.] * I:I:'ml"l -, n| |n.-"] FlrhqlT;—-q; Ili
- .- 2 | : -"" Dk g ,-"r .-""JA\-'& - X | Y. A
L " e S, I L 1 S T-.':. !
- iy - o | shglos ISRl 5T B
- [‘-3-‘-."-35 { .‘JTW‘_“E 'l'. 3] TEI.. i
A] i [Tame J ! name | % “ A ;
| . L ST S | ey Magsages |
frary B i o Abamn sne , |’f il s
Te = ~e= N
et s T L Erereplion rpfbad | icded frnag § Relationship E
i) - s : Canposed of
?urrnr.{ i t i oaurd lonnsl Ay = Ao] g .
b]—- s R R (R M-rui TR 'fo"l [r-'-'ﬂ"-'-‘m-l t mm
e] Sk il | JOERE ! SSpedaliz ation
ki s K : y (osinsn e — ' — —— Inplemented by
A . R TBEs iz
; : MFEG
BRI .
I]

Figure 3- 3: The feature model of the mobile phone

As shown m Figure 3-4, the textual specification represents (1) a name, (1) a descriptzon, (1m)
issues and decisions representing trade-offs, rationale, or justifications tfor including the
feature 1 an application, (iv) a #pe such as application capabilities, operating
environments, domain technologies, and implementation technologies, (v) commonality
indicating if a feature is mandatory, optional, and alternative, (vi) relationship with other
features such as composed-of, implemented-by, gen&mhsatmﬂfspt’:ciﬁ]iznti{_mﬁ_ (v11)
compostiion rule representing mutual dependency and mutual exclusion relationships to
indicate consistency and completeness of a feature, if any, and (vii) @/ocared-lo-suirsysiens

indicating the name of a subsystem that contains the feature, if any

Feature-name: Text Messages

Description: The phone can edit, send, and recetve a short text message
Issues and decision: Text message over mobile phone is a way of communication
Type: Application capability

Commonality: Mandatory

Composed-of: Sending Text Messages, Recetving Text Messages, Editing

Text Messages
Composition-rule: -
Allocated-to- Mes saging
subsystem:

Figure 3- 4: Features in textual specification language.

As described eatlier, the requitement artefacts are specified m use case and feature
model. Since the use case tepresents the requirements of a product member, the feature
model represents the requirements of a product line. Both types of artefacts are
elaborated into other types of software artefacts in subsequent activities of product line
engineering le. design and mmplementation. The following section, we present the

software artefacts bemg applied with the process of software pdeuct line design.

3.5. Design Artefacts

According to the literature, some approaches such as (Clauss 2001, Gomaa 2004,
Keepence and Mannion 1999) are proposed to adapt UML diagrams for modeling
software product line systems. In our approach, we adopt UML class diagram, statechart
diagram, and sequence diagram to present the software product line architecture. In the

tollowing, we described the details.

3.3.1. Class Diagram

[n our approach, we extend the class diagram presented in (Clauss 2001) by adding some

elements. The diagram consists of elements as described tollowing:

(1) Class Diagram — the element consists of three attributes, which are information ot

the class diagram:

(a) Class_Dzagram_ID — this attribute 1s identified as a class diagram;

(b) Systern — this attribute specifies which domain of product line is; and

(c) Product_Member — this attribute specifies for which product membet the class

diagram 18 specified.

(2) Existential — this element 1s used to represent the existential of a class diagram. It
consists of an attribute Commonality_V ariability — this attribute can be (i) Mﬂffﬁfﬂfﬂﬂ»‘, which
indicates a class diagram must be satisfied by product members; (1) alernative, which
indicates a class diagram must be satisfied and altered for particular product members;

and (1) optzonal, which indicates a class diagram may or may not be satistied by a product

member.

(3) Class — the eclement Class specifies a system component that is composed of
attributes, which deseribe properties of a particular class, and mesbods, which specify
operations of the particulat class. According to (Clauss 2001), a class can be one of three
types for expressing variability in product line: (1) #zarationPoinf, which represents a
variation pomnt of product line; (1) zarrans, which represents an alternative of a particular

variation point; and (1) gpfional, which represents an optional class.

(4) Relationship — the element Relationship describes an association between classes.
To capture and represent variability of a product member, classes can be associated by
applying one of two relationship types: (1) gemeralization/ specialization, which associates
between classes typed of variattonPoint and varant; and () associarion with cardinality 0...1,

which associates between any class and a class typed of optional.

As shown in Figure 3-5, we illustrate an extract of a class diagram for a product member. An
example of representing vanability 1s that a class DzplayScreen 1s typed of variationPoint as
classes GraphicColourScreen and TextScreen are typed of variant. The relationship between

the class DiplaySereen and classes GraphiColourScreen and TextScreen 13

seneralization/ specalization.

40

|
I ImageFormat SystemControl Interface '
Tat " -farmatSize:byte. -lastAction:String
— -formatName:String -time:float o
1 -powerfloat +SEtUn'm[.ﬁ .
+gynchionisevoid
| +selectSendiethodvoid “eiskanneciol
S +sendlatavoid
+operateToolApplication:void
+displayDatavoid
+diaJCaH:wid‘
+setDatavoid
+setFunction:void
+operateMetworkvoid
+acknowledge:void
+disconnectvoid
ol \\-\"-1
PCConnect ' SignalControl Call NetworkControl DisplayScreen
-periodCall:douhle -networkType:String -sizeY.double
ST ssendDataudn -dialMNoint -status:String -sizeX double
rdisconnectvoid +acknowledgevoid , , _
AransterDatavaid +re=:eweCaI!:vmd +e_stabIIEhCunnectin.n:vnid_ +displaySettingvoid
I —" *EﬂdCElL”Z'UDIEi | +disconneciConnection:void +displayFunctionMenuvoid
+establishCallivoid +restoreConnectionvoid +showSendhethod:void
+diverCallvoid +displayTimeStamp:void
+displayAcknowledge void
+displayvold
+operation? void
i
Infrared l Biuetooth I GraphicColourScreen TextScreen
+disconnectvoid HransterDatavoid +displayFunctiondenuvoid +displayFunctionMenuvoid
rgearchAPairvoid +searchAPairvoid ' +araphicseting.void e ——————
+cannectvaid +cannectvoid ‘
+transrerDatavoid +disconnectvord

Figure 3- 5: An extract of a class diagram

3.3.2. State Chart Diagram

In our approach, we propose the extension of UML state chart diagram by adding some
clements. The diagram consists of elements as described following:
(1) State Chart Diagram - the element consists of three attributes, which are
mnftormation of the state chart diagram:

(a) State_Chart_Diagram_1D — this attribute 1s identified as a state chart diagram:

(b) Systemr — thas attribute specities which domain ot product line 1s: and

(c) Product_Member — this attribute specifies for which product member the state

chart diagram 1s specified.

(2) Existential — this element is used to represent the existential of a state chart diagram.
It consists of an attribute Commonality 1V ariability — this attribute can be (1) mandatory,
which indicates a state chart diagram must be satisfied by product members; (i1) a/zernative,
which indicates a state chart diagram must be satisfied and altered for particular product

members; and (i) opfional, which indicates a state chart diagram may or may not be

satisfied by a product member.

(3) State — the element State specifies the system’s particular status. The states of the
diagram can be reptesenting some aspects of the variability. We define three types of a
state for expressing variability in a product line: (1) variationPoint, which represents a state
that initiates a variation point of product line; (1) sarzant, which represents an alternative

states of a particular variation point; and (i) opZonal, which represents an optional state.

(4) Transition — the element Transition describes a driving method to transform a state
to another state. To capture and represent variability of a product member, a transition
can be specified as one of three transition types: (1) variantIransitiony which describes one
of possible driving methods to transform a state to another state; (i) parameter [ransition,
which describes a transition requiring a parametetr to drive the method; and (1)

optional Transition, which describes a possible driving method to transform a state to

another state.

As shown in Figure 3-6, we illustrate an extract of a state chart diagram. An example of
representing variability is that states [dl and SavingPhoto are typed of variant state which
can be transformed from the state Displaying-lrea which is considered as wariationPoint
The ttansitions from the state DisplayingArea to the state Idle and end state are alfernative

[ransitions.

%)

Icdie
a2
A4
ume » 5 mins

time = ins
. . tirpe » 9 Mmins
diSDla"j.-D-.TE‘aFUHI:’HDﬂ selected :

S »
rEHSplayingﬂrea oyit selected
_ K SayingPholo
takeF‘hntnFumtmﬂ selegied
i : / o sawePhutuFunctinn calectied
(TamngPhﬂtu [

extract of a state chart diagram

Figure 3- 6: An

33.3. Sequence Diagram

ion.of UML sequence

diagram by adding some elements. The

We also propose€ the extens
S A4S described following:

diagram consists of element
fhiree attributes, W

m — the element consists of hich are ‘nformation

(1) Sequence Diagra

of the class diagram:
(2) S eqﬂem‘aﬂDﬁ{gmmﬂID _ this attribute 1s identified as a'sequence diagram;
omain of product line is; and

ibute speciﬁas which d
cifies for which pmdu

(b) System — this attt

ct member the

Product_Member — this attribute spe

cified.

(©)
sequence diagram is spe

sent the existential of a sequence diagram.

(2) Existential — this element is used to repre
1/ ariability — this

Y

an attribute Commonality_ Attribute can be (1) mandafory,

It consists of
mbers; (i) alternative,

s

atisfied by product me

uence diagram must be s
for pﬂttl{:ulﬂr pmduct

e satisfied and altered
m may Of may not he

which indicates a s€q

which indicates a sequence diagram must b
members; and (1) optiondl, which indicates a sequenct diagra

satisfied by a pmdu{:t membet.

(9) Sequence — the element Sequence specifies an interaction between an object and
actor, or between objects. We propose three types of sequences for expressing variability
in a sequence diagram: (1) wariationPoint, which represents a sequence that initiate a
variation point of later sequences; (it) zarant, which represents an alternative sequence of
a particular variation point; and (iit) opZonal, which represents an optional sequence.
.

(4) Message — the element Message basically represent a called operation from an
object mnteracting to another object. A message can be representing the varability of a
product member. Specifically, we propose three types of messages for expressing the
vartability: (1) warzantMessage, which 1s one of possible messages being sent from a
varaintPointS equence to another sequence; (1) paramererMessage, which 1s a message requiring
a parameter to drive the method and (1) oprzonalMessage, which is an optional message

that may or may not be senton a sequernce.

As shown in Figure 3-7, we illustrate an extract of a sequence diagram. An example of
representing variability 1s that the sequence 2.7.7 is specified as a variant point #7 and then the

sequences 2.1.1.7, 2.7.1.2, and 2.7.7.1.7 are variants of thewariant point »/.

i

!
Keypadinterfa Keypad SystemContr DisplayScree Camera

User

y

| |
1: keyin():void | |
| B T seiec*Optiml (): VOl
| = - ‘l.?-?; setFunctfnnf):rmid

n_'-"r'va-—

1.1.1.1: displayArga():void

14,12 display{}:\{luid

‘ .

1
|

| |
| 1
| 2: keyin():void | |

| BT 2.1: selectOptioh():void

= 2.1.1: setFunction():yoi
4 fv‘i) i 2911 takePhntq{):wmid

| 2ttt dspEaytpn

| <

2.1.1.2: displayFonttionMenu():void _ﬁ
= |
|
|
|
|

|
. I | |
| I

Figure 3- 7: An extract of a sequence diagram

3.4. Summary

This chapter described the meta model for specification of a product line system. It has
presented the types of artefacts proposed in our approach for specifying the software
artefacts created during product line analysis and design. It also described and gave
examples of each types of software artefacts. In the next chapter, we desccibe a prototype

tool which 1s implemented in order to assist the use of out model.

Chapter IV Prototype Tool

This chapter presents the prototype tool that we have implemented to demonstrate our
work. Tt aims to illustrate how the tool can facilitate the activity by generating software
artefacts, particularly use case and feature model. Section 4.1 describes the overview and

functionalities of the tool. Section 4.2 presents the interfaces of the tool. Section 4.5

sumimnarises the chapter.

41. Overview

In order to evaluate and demonstrate our approach, we have implemented a prototype
tool. We envisage the use of our tool as a general platform for creating the software

artefacts for product line’s analysis and design. The tool has been implemented m Java.

Figure 4-1 illustrates the architecture of our tool. The tool is composed of four
components, namely:
(a) Interface — This component provides the user interfaces for a user to specity the
type of documents to be created.
(b) Generator — This component generates a document according to the specific type.
(c) Display — This component presents a document created by the tool.

(d) Converfer — This component transforms a document to be in XML tormat.

According to Figure 4-1, the [nferface component is responsible for communication with a
user for specifying the type of document being created. The component Generalor 15
composed of two sub-components: izplemented and embedded. Consider 1 Case (a), a user
requests to create 2 document typed of use case or feature model, the implemented generafor
component is invoked. Consider in Case (b), a user requests to create a document typed
of class diagram, state chart diagram, or sequence diagram, the embedded generafor which 18

embedded with some exisrjﬂg tool is invoked to prmride the creation of the document.

46

The Display component 1s used to display a document created by the tool. Additionally,

the Converter component can be used to transform the document created by the tool into

XML format.

e ol e Sl L e e S o

M1 ~pase
Dmcumant

—
Loy
=

e e

Figure 4- 1: The Architecture of our Tool

The various components of the prototype tools support various ftunctionalities. These
tunctionalities mnclude:
(1) Document Creation, which 1s concetned with the generation of different typed
documents based on the specification of a user;
(1) Document 1V isualisation, which is concerned with the representation of the document
generated n (1).
In the following, we explain these functionalities 11 more details.

1. Document Creation

In ordet to support this functionality, the tool provides sophisticated user interfaces in
which a user can select a type of documents to be created. More spectfically, this

fuﬂcticma}iqr allows the user to create a document according to the proposed model. For

any of cases (a) or (b) above, the user can select to create a document for the whole
product line ot a particular product member. In the other word, the tool can generate a

document in different levels of granularity, namely: (a) at the level of specific product
members; and (b) at the level of product line. The generation of documents is executed

by the components in the tool i.e. implemented generator and embedded generator. Particularly,

we apply some existing UML tools i.e. Borland Together | | to create a class,

sequence, and state chart diagrams for the embedded generator component.

In Section 4.2, we show user interfaces for this functionality and an example of using the

mterfaces in which the type of documents a user has selected to be created.

I1I. Document Visualisation

The generated documents are recorded and represented in XML documents. The XML-
based documents represent the structure of a document including proposed elements as
described m Chapter 3. This functionality provides a user to access a concrete element of

each document 1n term of XML element.

4.2. Interface

This section illustrates the user interfaces of the prototype tool and describes how a user

can execute the various activities supported by the tool. We tlustrate the use of the tool

by giviﬂg Lﬁ}:ﬂmples based on the m{}bﬂe-phmne systems.

4.2.1. Selecting Specific Type of a Document

As shown in Figure 4-2, this mterface supports the tunctuonality of Document Generation. It

allows a user to 5pr:cif}; the types ot documents to be created and consists of four main

parts:

48

(a) a panel that is composed of two sub-panels, namely requirement, and design. Each
sub-panel contains different icons representing the various types of documents
of each development phase. The requzrement sub-panel contains use case and feature
model icons representing documents produced during the analysis phase. The
design sub-panel contains class diagram, statechart dragram and sequence diagram icons
representing docurhents produced during the design phase. Table 4-1 shows all
the icons representing the various documents.

(b) a panel that shows the selected type of document to be created.

(c) a panel with two buttons “OK” and “Cancel”, which either presents the next
interface or abort the command of document creation, respectively. In the case
(a) a user selects to create either use case or feature model, the tool calls the next
interface; or case (b) a user selects to create class, sequence, or state chart

diagram, the tool invokes embedded tool, specifically, Borland Together.

R M AR R A L LR N L RN R R A M B Bl e e

______ e s
I 1«"7 ! . . _..-.-.. 1 '
_UseCese FeaureModd CassDiaan =~ State Chart

i o : i
!. "l-t'l: L 4
iy

LRI TR

SELECTED ARTIFACT

OK ﬂantD

Figure 4- 2: An interface for specifying the type of software artefact to be created

49

Table 4- 1: Icons in panel (a)

Sub-panel Icon Software Artefact Type

Rf:qujrﬂments Use case

%

Rﬂquirements Feature model
Design Class diagram
Design Sequence diagram

Liragram
: gil :_aiil
g :
. 1:_‘,3} R i
Design ¢ ﬁjﬂ Statechart diagram
State Chart

Figure 4-3 illustrates how to work with the interface:
e Firstly, the user selects a type of document by clicking on its respective icon 1n
pﬂﬂﬁl .
e Secondly, the system displays the selected type of document in panel /.
o Next, the user either selects the “OK” button to precede an action of document

creation or the “Cancel” button to abort the action.

DESIGH

R s AR LT FR TR ST TR T AT
ST T I L

e e e L R LT T I I LI W Sy ey e e e
s e s kel i o i i i i o e R L

SELECTED ARTIFACTS

Cancel

: PPN FRSP — Al yary A L e e o i o 4 A R L W 1 SR L S oy s w0 S e L e DOTTAL R
o et S A P S e PP e o S e P RN e ALY P PP S it ok e o b a1 G S R et e n SR S S S

Figure 4- 3: Example interface demonstrating specifying of types of document artifacts

4.2.2. Specifying a Use Case

As shown in Figure 4-4, this interface also supports the functonality Docment Generation.
This mnterface consists of:
(a) a panel that shows a list of elements to be consisted in a document. The elements
following from the type of document selected from the previous mnterface (Figure
4-3). The example in Figure 4-4 shows the elements for a use case.
(b) a panel with two buttons, namely “Generate”, and “Cancel”, which are related to

actions for generating a use case, and aborting the creation, respectuvely.

I

{1

.y
| Pr—

AT N T T e T e — o ey B p e o b iy o kL e e e - e R - o o b e

| I{-r 1’] R Wi ﬁ F T ¥ s .--\.-\. SR - St ; -\. £ o e T R] ER e 5 v : - et % . El |i;..:\.¢t.?|"-\.é

- eotse Lase Lreation Rt - e L] i XK
e i e sl i

s b

[&=

FETESESE FETHES REERrErE .

|
W
g
|

Jsa Case D

Swsierm

Ve e e R e A T e e O

i i e T L A e S R S R e O P e

Froduy

A AL s -t =
o R L A L A Pl PR PR B Pl Wty it b e s I =y bty

. . Bt i PPt A B A P b o A1) P P 0 S 0 B U v s e bt by et ol P Y Pl i A i Pl D0 0 R Pt PR e e e o

AmmonzlityVariablity

e e L LT ST PR TR S I R (=S el r
aim g e S S T BT £ i T

[< o clre e
: i = . ;
' Variant Paint]
- 1
li i
.
T ¥ _— .
|"— e B Xy i ki a ; i inial Ll i S i et 8 e i a e
5 ' 3
| Varainis :
| t E
; d L
wrrvAry i el o et o AT e g el e R A P . e b ey
-' 1
i ™t P i] 5
{ g S
| Diescription i
: I
| #
] t H
H IS
H B R L T o it et e Y O R e b o B D P R O Y e it ke LW DR P s b Bl A SRS e bl Sl bR il H !
1
1 s i |
i Leyvel ;
; 3
S T et e e e e R S SN e T gl o e] el o B e B e T Y Cpae ity e

_ i
“raconditions

ot S Y . b 1
T PR e T e e

Posttanditions :

3

AL o B i i o e e e
P P I R PP

Primary Aciol

Secondsary Actor

i) ¥ o "y Wl Pl Pt e o o o o S A 0 A W P ' A e L P T (R g e L e

Exceptional i I
E‘Lmer'm'dlntaae case |

Subordinate use case i

Flow of evanis

Generate Cancel

i W R

SEECEEEE ER

- e o e s R e
o i e ey i e e e i A, LA

gy o P T
ot E B o o ek b o e AT

11111
T T LT S LT e rarpaprayperirprerr e P Y S FTTPTRE CTT T TART P ETE R ENTEE LD LA LE R LR Ea b e ELS RIS DAL L L LI LR L T L L il L T T e e e N e R T b L T T ki

Figure 4-4: An interface for creating a use case

The example shown 1n Figure 4-5 follows trom the specification in the example 1n Figure

4-3. This shows the case in which the user has selected to create a use case.

=y

{4

|

; = Ua‘:e 'Ca s {Z ' eaﬂ{m R e o =
. Uge Case iD rL}uEh’"im) o —
System ?ﬂnm‘rePhﬁune - = T - o
1 % ety Ao]EMETJ?‘].,W..WMM R L B R TR E A TR B e A s TR A o A
Commonalityvariablity fﬂ-,iternatj:-,r:e - o o - T 5
§ \ariant Foint [vl . m———
; varamnts ;hﬂ‘g.-iﬂg m ’!i phugfﬁrﬂ:hmhrﬂrat 3 rprpwpr ""E‘It;'l_.t]a'[l;] I:JhtjﬂF‘ ﬂumbprrrnm Jﬂ?ﬁ?;‘a“,ﬁa}l?““““‘“ £
2 Description [The phone is able to send a text message. The user can specity an address of a raceiver by =
; Level Tj serGoal o T m————
| Precanditions Th:: user has a!:aa::fﬂ,f beihémgg&?ﬂ?rnun af endmg nad mebc‘ﬂge frotm the ITE-:.IHL rﬁ:ﬁnu' ''''''''' ;
i
Fastconditions ETm;‘e phr:me ha Esnt the rnnﬂ“s age, o) I -
g R ACtar E'*_*[_ - E ' Jger : L L sy
Secondary Actar ; o -) B — i
; Flow of evenis gThl‘-" syatpm ::.h;:uws an ;aliﬁrTmr»irrftang a rneaﬁage T o o

1P s ol bl oo Bl L e L e e G LA L L el by L L T BT el B U L

Figure 4- 5: Example of specifying a use case

4.2.3. Specifying a Feature Model

As shown in Figure 4-6, the intetface also supportts the functionality Document Creation.

This interface consists of:
(a) a panel that shows a list of elements to be contained in each feature;
(b) 2 panel that shows the tree-structute of a feature model in which contains
specified features;
(¢) a panel with two buttons, namely, “Generate™ and “Cancel” which are related to

actions for generating a feature model, and aborting the creation, respectively.

The e}zﬂmple 1s shown 1n Figure 4.7

_n
Ll

o e B e —— - - e s e e M
e 1 A e g s e e T o T R B o e e e P - rar- o " by ? St o s s
[T - x 4 S e LR e e Sl R St FE i .:-c.;-c;. el 5 Lk s S -\.:; o 4 e et s "" R ¥ i
| vio Feature tdodel Creation — ' 5
i zaitire itode e ol ;
i =
BT e T T BT I T T e T T S R S e e e el e B R e e e e [T T T e T T R T T T T AT I T T o A T AR W T e R TN T R FLT L TR P T il
k] T ¢ R T P P e s B o AP e s TP P Pt B Pt e P P i D AP i P S i i P b i P P APt o P AT mA s gt |'s
2 H 1
] i 13
: Feature Mame : 2
i ar = r} !'_
¥ i [
H E
i i P
I " - s Vi
i j :
1 i
i q: il
! : Bl
i bl
T e T e e W O WY B T T Ty e e v St e e i et o T g |
3 - Fame] P fii
: SsUg an BLis1ar : I
= H
g ; I
H S e e T S e e e e sk i e e e A e e SR A e 1t
E } i
B -
J] ' iz
H g ¥ iz
a : H
jl e i PP B e B el P bt e e i da b e THETES Aratairaded, PR A MR AT o P, Fodd r L
1 Wl o i 2 i
| . H
1 dstential : 8
: : i i
2 Fa
] i
" e o - H
1 g &
5 a ' |2
§ Loy = ' ! Iz
| Relations Tvpe £
i
f l=
. 4
| 1
1 P ey P .-\T-\.-\..-\. Y Pt P gl by g e e i o et P et o e b P A P e W T Y S R s o i i ; i
- 1 i .
: i
- 3 3
Relaizd £ i
- sy
2 I
T Fa
- ik
: |.!
5 -
- i
i i
i b 4§
i 2
h 15§
i B
i | ¥
1 :
1 .
| i
1 i
5 i
a 1
1 H
y H
3 '
2 i
[H
L |
i -
I |5
I B
H .2
H 2
1 15
i 1k
1 -
A I
Y i
7 RS
1 i
: T
- it
i ; i
4 .
i il
5 [
I {5
i 13
I fa
i #
! L
! -
Y -
i | g
i E
i I
1 H
3 i
o
H
i i
e B
H k5
! 1
% i
H K3
: |a
i lis
i | &
| i F=
i |:
- H
[-
H It
H H
| c |
- £
b Bl
[el
H s
b
| Is
| 1.2
! Ji
il |
! E
8 T i e e 8 A S I B L L 00 0 A L Y By ATV s " wrams g T T R e + - - nm e s i - 5y AT & UL LT M 17 G LS My T e g . e g g rn e i
LETYET e TR] IR IR R N A N R T I N I AN A R I R I R R L L S A I R N I N N T AR AR I T I T IE FIEIT F IS P S F I TN FET S P TR I 00 0 00 00 5 G000 g 0 050 0 70 07 0w oy g 100 0 0 0 et et B0 M o 0y o g e o = o 8 o 8 g - e

Figure 4- 6: An interface for specifying a feature model

11111 A5

o B e R R e S e e T e e S - S Y . —
{ o o R A S e R T L 5 L S
1 F et ke L :

& Feature Model Creation

i il

Feature Marme E'Te:ﬁ message

TE LY T
P S T

| Descripiian ‘The phone can edit, send, and receive a short text message

lssue and Decision ETEHT message over mobie phone is 3 way of communication

! L = T = r ity F{ PSR R E R AR |

sroana

Tvpe E',—ﬂxpplitatinn capahility

FE==F Bt SLR e ' el CrL i |

............ e P T o - - e e e n B e e i o e s e e e e B B - B TN R R PR RN

Existential Mandatory

A

e P v T ey R S i (e P P e i o P e i e el v e o e Y AT i e o ey - Y et iy ey e i e P oy e ey i e e o Rl gt 8 e o N U bl T . By A i ' i

Relationship Type Cornposed-of - Add

L e T e T e e T R R LN R R

e

T L L b T T L T T T T e T T e L e

~elated Feature

£
:m:
L

o e m—

Camposed-af

sanding Text Messages
fFecapng Text Massages
Editing Text Messages
sending Tex i-.de&sagez[
[Feecamwing Texd Mezsages
Editing Text Messages

i - [
e e s i

e EEELE R TR LR R CTTEETI A AN 1Y R T e e
I S el e e - 8 R 88 % WA S8R

s

TR, S PR e s S e i

T Ty B
A T !

3
i
oenerato Cancel

Figure 4- 7: Example of specifying a feature model

54

4.2.4. Converting a document into XML

To suppott the functionality Document 1Visualisation, the tool allows a user to transter a

document into the Extensible Markup Language (XML) format. Out approach supports

the XML technology since there are several reasons:

(a) XML has become the de facto language to support data interchange among

L

heterogeneous tools and applications; and

(b) the existence of large number of applications that use XML to represent nformation

internally or as a standard export format (e.g. Unisys XML exporter for Rational Rose

(IBM), Borland Together (Borland), ArgoUML (ArgoUML).

Figure 4-8 presents an interface to transform a document into XML. Initially, the

documents of our concerned are translated mnto XMI. by using a Converter component. In

the case of the class, sequence, and state chart diagrams, the XMI format is generated by

using commercial XMI exporter (e.gi Unisys XMI exporter for Rational).

L e Bl B B e TS AR S I e B R B B LA R A R A LA T AL EuE N L o ey oy = B B e e el 1 o
i C ¥ . - i ' . 4 P A N R — ;
i i : Pk ' 3 Fl o
i _l' { s | ! o ik F 3 b : ! Ve AR 1 i E -!E'-"«-l,.r'r i
= Lonvertel s, b5 L) e sl
] L i . =
1 R T R
L e e e A e e w0 b e e e S i 2 e i i B D] R 3 - S + L e RO 0 10 0 5 B e e son o B g e R D i M A

Schema: Mo schemaloaded . Load Schema = Cancel

' = 3
e e i e IR

File: ‘Mofilg [oaded Load File ~ Cancel

Figure 4- 8: An interface to transfer a document into XML

4.5. Summary

This chapter has presented the prototype tool including its functionalities and user
interfaces. The chapter has illustrated the use of the tool to partly support the

specification of software product line artefacts.

Chapter V' Evaluation and Analysis

In this chapter, we evaluate and analyze our work. Section 5.1 describes an overview of
our evaluation, the different scenarios used to evaluate our work, and an outline of how

the evaluation was conducted. Section 5.2 presents the results of the evaluation and

analyze these results. Section 5.3 summarises the chapter.

5.1. Evaluation Objectives and Methods

The objective of the evaluation is to:

evaliale whether the model helps an organization in making

software product line artefacts miore precise and consistent.

According to the above evaluation objective, this testing was inducted by concerned the

fc::llmwing factors:

5.1.1. Selection of Participants

The testing scenarios used in our evaluation were based on two main factors. The first
factor was concerned with the different ways in which organizations cau develop
product line systems. As proposed in (Krueger 2001), organisations can develop product

line systems 1n three different ways:

=

(2) when an organisation decides to analyze, design, and implement a line of products
prior to the creation of individual product members (proactive approach);

(b) when an organisation enlarges the product line systems in an incremental way
based on the demand for new product members or new requirements for existing

products (reavizve approach); and

(¢) when an organisation creates a product line based on existing product members

by identifying and using common and variable aspects of these products (extractive

approach).

According to the organizations, we found that these approaches are not mutually
exclusive and can be used im combination. For instance, it is possible to have product line
systems initially created in an extractive way to be incrementally enlarged over time by

using a reactrve approach.

Particularly, we randomly selected up to 50 organisations of different business areas such
as software production, financial, trading, logistics, airlines, insurance and sc on by
analysis the infrastructure of the orgamizations. We applied CMM standard for justifying
the organisations to be participated in our study. Specifically, the criteria which we
applied to justify the organisations for our testing are: (i) maturity, (i) size, and (ii)

number of software products.

The second factor was concerned with the participants mmvolved in the product line
system development process. Participants are stakeholders who are involved in this
process ranging trom market researchers, to product managers, requirement engineers,
product-line engineers, software analysts, and software developers. These stakeholders
contribute in different ways to the product line system development process, have
distinct perspectives of the system, and have distinct interests in different aspects of the
product line systems. For example, a market researcher may be interested in the
requirements and features of a new product member to be developed, while a software
developer may De interested in the design and implementation aspects of this new
product member. Therefore, the stakeholders would be interested in different types ot
documents that may assist them in their various tasks during system development. Note
rhat these participants have experienced in the legacy system of their organizations but

net necessardy have rhe knowledge of software product line systems.

LN
|

5.1.2. Test Cases

In order to take into consideration the various ways of developing product line systems,

the heterogeneity of stakeholders, and document types. The five scenarios used 1n our

testing imclude:

(a) the creation of a new product member from existing product line;

(b) the creation of product line from already existing products in their organisations;
(c) changes to a product member in a product line;

(d) changes to the core assets of a product line; and

(¢) impact of changes to the cote assets of a product line to a product membet.

For each of these scenarios we have identified the stakeholders involved in the process
and the types of documents according to the meta model that are related to the
scenarios. We asked our participants to perform some of above tasks twice: (1) by
applying the prototype tool ptepared by the author (see in Chapter 5); and (i1) by
manually performing. Manual practice may subject to applying any existing software of
the organizations. The results of each task are software artefacts which are developed
according to the meta model. The types and number of software attefacts are various in

each task. The author has prepﬂred the software artefacts for some tasks as rf:quired.

Fach task 1s described below:

(a) Task 1: The creation of a new product member from existing
product line

This situation occurs when an organisation wants to enlarge its system and creates a new

=

product membet. In this case, a set of requirements and design are being generated by
considering the existing documents e.g. feature model, class diagrams. As shown 1n

Fioure 5-1. the stakeholders involved mn this case are:

L8
haw

(a) market researchers (or persons who act as marketr researchers) that are

| S

1?55pﬂ115ib1& to idf‘:ﬂtif}r the feasibility of pmducing 4 riew pmduat and the features

that this new product should include from a commercial point-of-view;

(b) requirements engineets and product managers (or persons who act as
requirements engineers and product managers) that specify the requirements of
the new product;

(c) product line engineers, product managers, and software analysts (or persons who
act as product liné engineers, product managers, and software analysts) that
identify which aspects in the cote assets of a product line are related to Ithe new
product;

(d) software analysts and software developers (or persons who act as software
analysts and software developers) that analyse existing product members and
identify the commonality and differences between existing product members and
the new product; and

(¢) software developers (or persons who act as software developers) that design the
new product by reusing parts of existing product members and specifying new

aspects of the product being developed.

S

{‘H":
A
i : i
s . -wf" J.--‘"'''''—''""---.-_,.__ﬂ-"'.lal
’
iarket researcher xwf
survey and collect reguirement for
new product member
[
e, "‘"g-"-
L % i > i {
‘%{k \?{ ,.a-""r! o *H"m
jpa—— sl
£ : : : sl Fraduct manager
| specify the requirements for new "
Requirement product member i
ENJIineer _f_.f‘
——
._,-’"-‘ -‘_\1-\-'.
4
(. J<
T T _‘__‘"_‘_‘——._,__J___"_‘—_‘- Jﬁ
. : : e y
rf,-ﬁtdentlfy' to the product-line T b
5 o _ _ .
() architecture L o f[“‘n
! M e Fi ,
i 1‘\1__:4_#_#
e il Software analyst
| — g
Product-line {"ﬁ ™y o
engineer L #_;“!f'——-___ﬁ_hﬁ______- H“xﬁ .
; : 5 _h__"—'--._.__.__“_ - I:I __.-'E
identify the relations of those T _‘[_
aspects netween product-line __r_mf—-*’ [Fas
A o
.,ff"’f Software
2 developer
Ix A
H"—\-._‘___.‘_'_._F.ﬂ"'
design for new system

Figure 5- 1: Scenario for Task 1

For this scenario, it 1s necessary to compare vatious documents of a product lne,

documents of existing pmduct members and new product member.

(b) Task 2: The creation of product line from already existing
products

As shown 1n Figure 5-2, the stakeholders mvolved m this case are:

(a) product managers (or persons who act as product managers) that identify which

aspects of the pr::_aduct members should be part ot the prc}duct line:

(b) product line engineers, software analysts, and software developers (or persons
who.act as product line engineers, software analysts, and software developers)
that design the documents at the product line level; and

(c) software analysts and software developers (or persons who act as software

analysts and software developers) that develop the documents at the product line

%

level.
I'_“‘H.
J
S B e
TN AN
Er J]‘é b H‘H
\"‘-u.__.__m_,.__ﬁ-""!
S _ Froduct manager
identify common and different
(™ features hetween phone maodels
:|’
‘,-""'\-1'_- "'"‘“ﬂ-ﬁ—.‘—-—_‘__‘___—_
.“/ "‘-‘_\ R\é ;_a—""'d_"q__"“m,*
i R
Software N\ \ i
develaper ™ et
R design the software product-line
\ﬁ = architecture
xﬁ_.f* i
..-F.-'“"-'r "'-,_x 1\'.'\-
Py k N
- LT
= o~ '
() N\ e
_ - W
My T e—— \ .rfL
A T Ry H"”cl EERN
Software analyst e ol \J F‘mdu_::t-lme
L\‘ engineer
e ool
develop the software product-line
architecture

Figure 5- 2: Scenario for Task 2

For this scenario, it is necessary to compare various documents of existing product

members.

(c) Task 3: Changes to a product member in a product line

As shown in Figure 5-3, the stakeholders involved in this case are:

(a) sottware analysts (or persons who act as software analysts) that specify changes
to be done 1n a design part of a product member; and

(b) sottware analysts and sotftware developers (or persons who act as software
analysts and software developers) that identify the etfects of these changes in the

other related desigﬂ software artefacts.

61

g
o, W)
“E _JM
. x}-&.x specify a change e C]
'1.,‘_\-
Software ‘H\H e ﬁ
developer S ot AN
. R il Software analyst
—— AT
4
]
5 /
e~

identify an effect to other software
artefacts

Figure 5- 3: Scenario for Task 3

(d) Task 4: Changes to the core assets of a product line

As shown in Figure 5-4, the stakeholders involved in this case are:

(a) market researchers (or persons who act as fnarket researchers) that identify new

features of the system; and

(b) product-line engineets (or persons who act as product-line engineers) that identity
which aspects in the core assets of the product family ate related to the new

features and the effect of these new features to the other documents at the

product line level.

B
=" zurvey and collect requirements of

= changes from the market oy
g ._w-"’--ﬂ
x T Froduct-line
A .
lvlarket researcher e S anginger

— -—

identify related features and effects
to product-line architecture

Figure 5- 4: Scenario for Task 4

(e) Task 5: Impact of changes to the core assets of a ptoduct line and
product members

As shown in Figure 5-5, the stakeholders involved i this case are:

(a) product line engineers (or persons who act as product line engineers) that 1dentity

the changes to be done at the subsystem; and
(b) software analysts and developers (or persons who act as software analysts and

developers) that identify the effect of these changes at the product member

design documents.

S% -)

v .- 7 {
- e “"-h'_q__'_,-'-"' '
e g

identify @ subsystem o be

Froduct-line %
: changed 4
" r,r“"Snﬂware analyst
e
r‘“} /-""m““*-.ﬂ“
b L !
- O
N
£ N identify design artefacts related to
Software the changed subsystem
developer

Figure 5- 5: Scenario for Task 5

5.1.3. Measurement of Test

[n this evaluation, we have conducted sets of testing related to five different scenarios of
product line system development. The tests are justified by concerning two aspects.
Firstly, we have used the following standard definition of secal/ and precision given 1in
(Faloutsos and Oard. 1995). The authors described that precision measure represents the
soundness of documents to be retrieved due to an inquiry and recall measure represents
the proportion of the trelevant documents. We then adopt the measurement techniques
ro capture the commonality and varability of a product line system. Particularly, we

compare the creation of software product line artefacts according to the meta model (a)

03

by applying the prototype tool and (b) by manually performing. As the following, the

precision and recall are calculated by:

Precision= | ST UT| / | ST |
Recall= | ST~ UT| /| UT|
where
o ST is the set of artefacts which are available 1n a system;
o UT is the set of artefacts which are specified by participants; and
e | X| denotes the cardinality of the set X, in which represents the artefacts are

specified validly.

Note that an artefact which 1s considered in a test 1s a fine-grained element of document.
Secondly, we measured the time to complete a task when users were proceeding each
one of test cases with normal procedure and available tools, and the time to complete the
same task with the proposed model and prototype tool. We also asked the participants to
fill in our questionnaire contaifing the questions with a five-pomt scale to measure
aspect of use. The score of each aspect of use—easy to decide to next step, easy to
understand the requirements and design, easy to literate and locate information and
overall satistied with analysis and design based on a five-point scale that score 1 =

Strongly Disagree, 2 = Disagree, 3= Neutral, 4 = Agree and 5 Strongly Agree.

5.2. Evaluation Results and Analysis

In this section, we present the results of our evaluation for objective described in Section

5.1 and analyze these results.

In the tests, we have organized groups of partictpants which properties are fitted into our
criteria (see Secton 5.2.1). Moteover, the tests are subject to the development of
software domain with which the participants are familiar. Every test, we have prepared

the participants the software requirements 10 text, as some tests, some software artefacts

are provided by the author. This is due the ditferent objectrves ot the tests as described

i Section 5.1.2. Additionally, since it is an agreement between the author and
participants. We do not explicit the source and profile of participating organisations in
this report due to the confidential issues. Each group 1s assigned to perform some tasks

(as describe in Section 5.2.2). Table 5-1 shows the participation of each group for each

task.

Table 5- 1: Participation of each group for each task

Task 1 Task 2 Task3 | Task4 Task 5
Group 1 v’ v v
Grgup 2 v’ v v v v’
Group 3 v
Group 4 v
Group 5 v v v v

Table 5- 2: Summary of requirements and design artefacts created or changed in each

task by all groups

Task 1 Task 2 Task 3 Task 4 Task 5
(from'3 | (from4 | (from3 | (from?2 | (from 2
tests) tests) tests) tests) tests)
No. of excpecled requirements 243 1078 MBS 40 44
artefacts to be created or changed
No. of actnal requirements artefacts 227 971 100 35 40
created or changed
No. of expected design artefacts to 347 1417 111 67 40
be created or changed
No. of avtual design artefacts to be 270 [A& 100 56 | 40
created or changed ' ; |
Total no. of expected artefacts to be 590 2495, | 24 107 | 34
| created or changed |
Total no. of actual artefacts that are 497 2284 200 91 80
created or changed |

We manually counted the number of software artefacts created in the tests. As shown in
Table 5-2, the number of requirements artefacts are created by applying the prototype
tool 1s 243 as the number of requirements artefacts are manually created is 227. These
numbers are accumulated from three tests (petformed by three groups as shown in Table
5>-1). The figures in the table show the difference of the numbers of software artefacts
rhat are created in the same rask and having the same software requirements. Moreover,
Tables 5-3 to 5-7 show a summary of the number of requirements and design artetacts

created or changed m each task by ditferent group.

Table 5-3: Summary of requirements and design artefacts created in Task 1
UT ST
No. of requirements artefacts identified by Group 1 166 172
No. of design artefacts identified by Group 1 154 192
Total no. of artefacts identified by Group 1 320 364
No. of requirements artefacts identified by Group 2 36 43
No. of design artefacts identified by Group 2 28 61
Total no. of artefacts identified by Group 2 64 104
No. of requirements artefacts identified by Group 5 25 28
No. of design artefacts identified by Group 5 88 94
Total no. of artefacts identified by Group 5 113 122

Table 5-4: Summary of requirements and design artefacts created in Task 2

UT ST
No. of requirements artefacts identified by Group 2 368 437
No. of desigﬂl artefacts tdentified by Group 2 554 615
Total no.of artefacts 1dentified by Group 2 022 1052
No. of requirements artefacts identified by Group 3 2060 272
No. of design artefacts identifted by Group 3 354 a7l
Total no. of artefacts tdentified by Group 3 620 643
No. of requirements artefacts identitied by Group 4 102 7
No. of design artefacts 1dentified by Group 4 87 99
Total no. of artefacts identified by Group 4 189 196
No. of requirements artefacts identified by Group 5 235 272 |
No. of design artefacts identified by Group 5 318 352
Total no. of artefacts identified by Group 5 553 604

Table 5-5: Summary of requirements and design artefacts changed in Task 3

iy ST
No. of requirements artefacts identified by Group 1 16 17
No. of design artefacts identified by Group 1 15 12
Total no. of artefacts identified by Group 1 31 | 29
No. of requirements artefacts identified by Group 2 22 23
No. of design artefacts identifted by Group 2 12 14
Total no. of artefacts identifted by Group 2 34 37
No. of requirements artefacts identified by Group 5 62 | 73
No. of design artefacts identified by Group 5 13 85
Total no. of artetacts identified by Group 5 135 158

Table 5-6: Summary of requirements and design artefacts changed in Task 4

| | UT | ST |
| No. of requirements artefacts identified by Group | |27 32|

No. of design artefacts identitied by Group 1 B 34 40
Total no. of artefacts identified by Group 1 61 2|
No. of requirements artefacts identitied by Group 2 8 | 3
No. of design artefacts identified by Group 2 | 22 | 27 .
| 30 | 35 |

Total no. of artetacts identified by Gmup 2

60

Table 5-7: Summary of requitements and design artefacts changed in Task 5

| UT ST
No. of requirements artefacts identified by Group 2 23 2
No. of design artefacts identifted by Group 2 28 25
Total no. of artefacts identified by Group 2 51 52
No. of requirements artefacts identified by Group 5 17 17
No. of design artefacts identified by Group 5 12 3
Total no. of artefacts identified by Group 5 29 32

Additionally, Table 5-8 shows, for each case, a summary of the number of artefacts

created or changed in the tests. In the table, ST is the set of artefacts expected to be

created or changed; and UT is the set of artefacts created or changed.

Table 5- 8: Summary of artefacts involved in the tests

Test1 Test 2 Test 3 Test 4 Test5

L 6 E— 320 %1 61

ST group 1 564 29 79

| ST st UT o o 309 26 58

0 —" 64 922 34 30 51

ST s 104 1052 37 35 52

| ST sionp2 (™ Ul sroup]| 61 887 32 28 43

UT sroup 3 620

ST svoups 043

| 8T groupa M U T group 3 | 607

UT sroup 4 189

ST_gmup 4 196

| ST groups M UT group 4| 179

UT sioips 113 553 135 2L

ST aroup 3 122 604 158 32
T Ay 110 548 129 26

Table 5-9 shows the results of our testing for each test in terms of recall and precision
rates. The results shown in Table 5-9 provide positive evidence about our approach to

ﬂpp]}r the meta model to 5pecif}-' software pmduct line artefacts at a high level of recall

and precisiun.

Table 5- 9: Precision and Recall Rates (%0)

Test | Test | Test | Test | Test | Average Precision/
1 2 3 4 5 Recall of each group
Precision of group 1 0.85 0.90 | 0.80 0.85
Precision of group 2 0.59 | 0.84 | 0.86 | 0.80 | 0.83 0.78
Precision of group 3 0.94 0.94
Precision of group 4 . 0.91 0.91
Precision of group 5 0.90 | 091 | 0.82 0.81 0.86
Average Precision of | 0.78 | 090 | 0.86 | 0.80 | 0.82 0.83
all tests
Recall of group 1 (L9 0.84 | 0.95 0.92
Recall of group 2 095 | 096 | 094 | 093 | 0.34 0.92
Recall of group 3 0.98 0.98
Recall of group 4 0.95 0.95
' Recall of group 5 097 | 099 | 0.96 0.90 0.96
Average Recall of all| 0.96 | 0.97 | 0.91 0.94 | 0.87 0.93
tests

We applied the histogmms to compare the precision and recall in the testing. Figure 5-6
shows that the precision figures in-all the cases and the recall figures 1n all the tests are

not so significant. On average, the performance of our approach in ferms of precision

and recall measurements in tests seems to be consistent.

—— [est 1

—@— jest 2

Test 3

Test 4

—i— |25t 5

—a— Average Precision/
Recall of each group

Figure 5- 6: Precision and recall figures of each group as well as
the average precision and recall of all tests

638

Addidonally, the time spent during the generation of the software product line artefacts
in the tests varies depending on the size of the artefacts and the number of requirements
and design artefacts. For example, in Task 2, the processing time in the tests with groups
2 and 5 took much longer than groups 3 and 4 which are significantly smaller. Moreovert,
the experience and expertise of stakeholders who involve the specification process also
conttibutes to an increase ‘of the processing time. Table 5-10 shows the summary of
approximate time spent in each test. As shown in Table 5-10, some cells has ﬁm data
since those groups did not participate in the tasks. For example, group 1 took part in

Tasks 1, 3, and 4 but not in Tasks 2 and 5.

Table 5- 10: Summary of approximate time spent in each test (hours)

Task1 Task 2 Task 3 Task4 Task 5
Group 1 22 S 0 1 -
Group 2 125 37 2 3% 4
Group 3 = 4 - . .
Group 4 . 0.5 - . .
| Group 5 3 16 0.5 - 3.5

Moreovet, after completely all tasks, the subject was observed regarding attitudes toward
various aspects of software specification without and with the meta model. The results
are summarized m Figure 5-7. Figure 5-7 depicts how participants evaluated the applving
ot the meta model for specifying software product line artefacts i.e. requirements and
design artefacts through our questionnaire. As seen in the figure, the participants agreed
average ot 5 scores ease of deciding next step in specification with the conventonal
software engineering methodologies, while they agreed 4.3 scores with our approach.
Stmilarly, ease of understanding the rational of systems, the participants agreed on

average of 2.3 scores with the conventional software eﬂgineermg methr:adc::-lc-gies and 4.5

scores with our approach. Ease of locating the information, the participants agreed 3.1
scores and 4.4 scores for the conventional documents and our proposed documents
respectively. On the average, participants feel more satisfied with specification of
software product line systems when applying our meta model than conventional methods

and techﬂiquﬁs.

69

5i- [
A 1 Conventional
' approaches
3 f |
~ @mOur approach
2
1
0 - = . _
Easy to decide to Easy to Easy to locate the Overall satisfied
next step understand the information w ith specification
rational of
systems

Figure 5- 7: Comparison of Qualitative User Evaluation on conventional software

engineering approaches and our approach for specification of software product line
systems

5.3. Summaty

This chapter has llustrated the tests and their results. We have observed and evaluated

the results of software product line specification by applying with the precision and recall
measurements. In addition to, the explanations of results have been gien. The

evaluation and analysis leads to the conclusion of this research that will be presented in

next {:hapter.

Chapter VI Conclusions and Future Work

We provide in this chapteg the conclusions, findings, and future work of this research.
Section 6.1 presents the overall conclusions. The findings of this research and the future

work are described in Section 6.2 and Section 6.3, respectively. The final remarks are

listed 1n Section 6.4.

6.1. Overall Conclusions

This research has contributed to specifying the software product line artefacts 1n a

systematic way. We summatize below the contributions in this research.

A meta model for product line systems — In this research, we proposed a meta model
for product line systems in Chapter 3. The concepts and motivation are derived from the
background in Chapters 2 and from the survey of the organisations. The model 1s
composed of document types. Firstly, it includes a‘set of documents created during the
analysis process of product line systems. Two types of documents ate concerned, namely:
(a) feature model used to represent reference requirements of product line systems; and (b)
ise case used to represent requirements of product members. Seconding, it includes a set
of documents created during the design process of product line systems. Three types of
documents are concerned, namely; (2} class diagram, (b) sequence diagram, and (b) szatechart

diagram used to represent design models of software product line.

The demonstration and evaluation of the approach — The prototype tool in Chapter
4 is implemented in Java to facilitate the demonstration and evaluation of the approach.
The main functionalities of the tool are namely: (a) Document Generator, specitying
documents for software product line systems; and (b) Document Presenter, recording and

representing the documents created by Document Generator.

"'-.l

fer e

Additionally, five cases are created to demonstrate different situations of software
product line development, involving (a) different types of documents; and (b) different
stakeholders. The experiments of document creation have been evaluated by considering

two criteria: (1) easy and (i) specifying documents. For the latter ctiteria, the preczse and

recal/ measurements are used.

%

6.2. The Findings

We summarize below the findings 1n this research.

6.2.1. Problems of the Establishment and Maintenance of Product
Line Systems in Organisations

Many approaches have been pfoposed to support the development of product line

systems. However, there are many associated problems which we describe in this section.

I. The Difficulty to Get Support from Organisations

Due to timing constraints, an organisation usually considers available methodologies
rather than establishing product line. Additionally, an organisation has defined and used
the cutrent development process for a certain period of time. The organization prefers
adopting familiar and practical techniques to support the development process rather

than unfamiliar techniques.

[I. The Uncontrolled Growth of Variety

[deally, the establishment of product line needs to have a stable and clear vision of
domain; however, it needs to be flexible enough to evolve new requirements. Practically,

an {.)rgﬂmznﬁaﬂ 13 uncertain about requirements of pmduct membpers and dEst‘il(}pS extra

opttons to antictpate all possible requir&mems.

72

I1I. The Difficulty in Communication

Product line system development is a collaborative process where people from various
disciplines need to communicate each othet. In other words, communication is required
to tacilitate and improve the software system development. For example, Meyer (Meyer
1998) suggested that the interaction between stakeholdets e.g. between the development
team and manufacturing team should be concerned. In addition to (Finkelstein and
Guertin 1998), the authors proposed that good communication provides the right
requirements at the right time and the right place. Precise requirements must be known

in order to facilitate actual ﬁnplementatimﬂ.

However, 1t 1s not easy to support communication between various groups of
stakeholders in an organisation. Successful communication between stakeholders
depends on various factors such as: (1) sufficient resources e.g. staff or tool to facilitate
the communication; (1) differences in organisational cultures; (i) distinct organisational
structures; and (1v) stakeholders’ attitudes and aspirations. Unsuccessful communication

in an organization leads to misunderstanding and lacks of some concepts during the

development of software systems.

IV. The Difficulty of Defining Commonality and Variability
Defining commonality and variability of product line is to' thoroughly discover the
product line descriptions including all common and possible variable aspects. However,

there are two 1ssues which cause the difficulty of the practice. These 1ssues are:

Different Perspectives

It 1s difficult to share views between different products and represent opinions berween
different tools. For example, sales engineers can offer a new combination of
requirements, which seem perfectly reasonable from a customer viewpoint, but appear to
be unproved in the technology domain. This difficulty to describe different perspectives

ot an artefact causes the difficulty of defining commonality and varabiity.

73

Lack of Knowledge

Deﬁﬂjﬂg CG}H]IHDHELH?_‘}F and Vﬂﬂﬂ.bﬂit}f of product line needs stakeholders who have
enough experience, knowledge, responsibility and authority. However, it 1s not easy to

find stakeholders who are qualified and also available to take this task in charge.

V. The Difficulty of Documenting Management

Data in product line systems rapidly grow as the number of product members in product
line increases. Bosch (Bosch 1998) described that stakeholders need to interpret
documents and discover relevant documents; therefore, it is important to specify the
documents cleatly and validly. However, there 1s a large number and heterogeneity of
artefacts and relationships between those artefacts in the domain of product line systems.
[t is difficult to document the semantics between documents. The difficulty of
documenting management leads the following issues: (1) missing semantics — documents
miss to express the semantics of the context; (W) failure of inferpreling the semantics —
stakeholders fail to interpret the semantics of documents; (11) 7zzssing of relevant documents —

stakeholders miss discovering all related documents of interest to them; and (1v) fazlure of

searching documents — 1t 1s difficult to locate the documents efficiently and promptly.

VI. The Confliction and Dependency between Artefacts in Product

Line Systems

Ideally, a feature 1s an atomic unit and a set of features can be put together to fit with a
product member’s requirements. However, features are not actually independent. Adding
ot removing a feature to or from product line has an impact on othet features,
Additionally, a feature is also related to other types of artefacts in a product line.
Therefore, adding ot removing an artefact has also an impact on other ditferent artefacts.

It leads a difficulty to development and maintenance of product line systesas.

VII. The Difficulty to Specialise Variability
Varability can be specialized in different phases ie. design, implementation, compile,
linking, or run-time. However, there ate some difficulties in specialization for vartability

such as: (1) feature inferaction — specialization of a feature can lead other features in 2

74

product line to have unexpected results; and (i) separation of concern — some variability are

separated mnto different artefacts; however, this can lead to the difficulty of specialization.

VI.1 VIII. Issues of Evolution of Product Line Systems

There are some situations that require the evolution of product line systems such as: (1)
there 15 a change on ﬂﬁsﬁng product line; and (1) the core assets of product line have
missed some functionalities. These situations occur when the maturity level of product
line systems 1n an organization has grown. The organisation requires a software process
which implements new requirements and maintains the consistency of existing systems.

However, the 1ssues of evolution are found and defined in (Bosch 2000).

6.2.2. Precision and Recall Measurement

This research has shown that some degree of systematic process in creating software
artefacts which can be partly facilitated by the prototype tool. The creation of documents
captures the semantics that are represented through the structure of each document type.
As shown in this research, the results of creation are measured by using preczsion and recall
rates. The average precision measured as 85.3% and average recall measured as 83.3%.

The results shown in the research are giving pﬂsitive to the approach.

6.2.3. Benefits

The research has demonstrated the possible situations of the use of meta model during

the develﬂpment of prmduct line systems. We describe below the benefits ot use:

I. Reuse

The research has found that the degree of reusing core assets of product line systems
atfects the cost of the development of the systems. The cost of the product line system
development depends on the proportion of reuse of the core assets tor the development
of product members. However, the poor reuse would have caused higher cost to the
product family system development. The specification of software product line artefacts

=

mmfluences the develmpment by reducing the cost 1.e. effort and time.

1. Understanding

The research has shown that different stakeholders, who have different experiences in

the product line system development process, have different perspectives regarding to

software artefacts. Several artefacts are used to represent stakeholdets’ requirements and

design. Coarse-grained software artefacts such as common and variable aspects 1n feature
. % " :

models and fine-grained software artefacts such as ones in use cases are llustrated

though the schema of each software artefact type and can facilitate the understanding of

the generated documents.

6.3. Future Work

A number of possible directions for further mvestigations have been identified. We
provide in this section future work of the research, what needs to be done to improve

the approach and to increase the benefits of the approach:

° Tool for Document Generation and Visualisation: As shown in this
research, a large number of various artefacts can be generated for a product
line system. It is therefore believed that the approach could benefit by
providing tool fully support for the specification of documents. In addition,
sophisticated techniques for visualization could support the use of
documents more efficiently.

° Domain Implementation: The research has focused on two main activities
of product line system development ie. analysis and design. The approach

could be expanded to cover the actvity of implementation in otder to

complete the whole life-cycle of the development of product line systems.

6.4. Final Remarks

This research has presented the approach for software product line specttication. The
research 1 this research has been contributed to:
- provide the background of product line systems (Chapter 2);

- present the meta model (Chapter 3);

76

- 1lustrate the prototype tool (Chapter 4);

- demonsfrate and evaluate the approach (Chapter 5).

. Bibliography

America, P., H. Obbink,, J. Muller, and R. Van Ommering. 2000. COPA: A Component-
Ortented Platform Architecting Method for Families of Software Intensive
Electronic Products. Tuzorial in: The First Conference on Software Product Line
Engineering (SPLCT), Denver, Colorado.

Arango, G., and R. Prieto-Diaz. 1991. Domain Analysis Concepts and Reseach
Directions. Domain Analysis and Software Systers Modelings: 9-31.

Ardis, M. A., and D. M. Weiss. 1997. Defining Families: The Commonality Analysis.
Pages 649-650. the 19:h International Conference on Software Engineering. ACM Press
New York, NY, USA, Boston, Massachusetts, United States.

Atkinson, C., J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Paech, J. Wust, and]. Zettel. 2002. Component-based Product I ine Engneering with

UML. Addison-Wesley.

Bass, L., P. Clements;and R. Kazman. 2003. Software Architecture in Practice. Addison-
Wesley Professional.

Bayer, J., O. Flege, P. Knauber, R: Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M.
DebBaud. 1999. PulLSE: A methodology to develop software product lines. Pages
122-131. the Fifth ACM SIGSOFT Symposium on Software Reusability (SSR'99), Los
Angeles, CA, USA.

Borland. Borland Together Control Center 6.2.

Bosch, J. 1998. Product-Line Architectures i Industey: A Case Study. Pages 544 - 554.
the 21st International Conference on Software Engineering. IEEE Computer Soclety
Press, Los Angeles, California, United States.

—. 2000. Design and Use of Software Architectures: Adopting and Evolving a Product-line
Approach. Addison Wesley.

—. 2001. Software Product Lines: Organizational Alternatives. the 23rd [nternational
Conference on Software Engineering.

CAFE. 2003. from http://www.esLes/en/projects/cafe/cafe. html.

Campbell, G. H., Jr., S. R. Faulk, and D. M. Weiss. 1990. Introduction To Synthesis,
INTRO_SYNTHESIS_PROCESS-90019-N. Software Productivity Consortium,
Herndon, VA, USA.

Clauss, M. 2001. Modeling vartability with UML. GCSE 2007 - Young Rescarchers
[V orkshop.

Clements, P., and L. Northrop. 2002. Software Product Lines: Practices and Pafterns. Addison-
Wesley, Boston, MA.

—. 2004. A Framework for Software Product Lines Practice.
http:/ /www.sei.cmu.edu/ productlines/framework.html

Cockburn, A. 1997, Structuring Use-Cases With Goals. Journal of Object-Oriented
Programming Sep /Oct: 35-40.

—. 2000. Writing Effective Use Cases. Addison-Wesley, Boston

Comat, M., J. Jourdan, and F. Boisbourdin. 2000. The SPLIT Method. Pages 147-1006. the
Erst Software Product Lines Conference (SPLCT), Denver, Colorado, USA.

Fantecht, A., S. Gnesi, G. Lami, and E. Nesti. 2004. A Methodology for the Derivation
and Vertfication of Use Casees for Product Lines. Pages 255-264. the 3rd
International Conference, SPLC 2004. Springer Verlag, Boston, MA, USA.

Gomaa, H. 2004. Designing Software Product I ines with UML: From Use Cases to Pattern-based
Software Architectures. Addison Wesley Professional.

Griss, M. L. 2000. Implementating Product-Line Features with Component Reuse. /e 61/
[nternational Conference on Software Rewse. Springer-Verlag, Austria.

Griss, M. L., J. Favaro, and M. d. Alessandro. 1998. Integrating feature modeling with the
RSEB. Pages 76-85 in P. Devanbu and J. Poulin, eds. zh¢ 525 International Conference

on Software Reuse. IEEE Cmmputer Society Press.

Halmans, G., and K. Pohl. 2003. Communicating the Variability of a Software-Product
tamily to Customers. Journal of Software and Systems Modeling. Springer.

Jacobson, L. 1992. Object-Oriented Software Engineering: . A Use Casé Driven Approach.
Addison-Wesley Professional.

Jacobson, 1., M. Gtiss, and P. Jonsson. 1997. § oftware Reuse: .Architecture, Process and
Organization for Business Success. Addison-Wesley Professional.

Jazayeri, M., A. Ran, and F. V. D. Linden. 2000. Software .Architecture Jor Product Famlies:
Principles and Pracrice. Addison-Wesley Pub (Sd).

Kang, K., S. Cohen, |. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

Kang, K. C., S, Kim, |. Lee, K. Kim, E. Shin, and M. Huh. 1998. FORM: a feature-
oriented reuse method with domain-specific architectures. . nnals of Sottware

Eingineersng 5: 143-168,

Keepence, B., and M. Mannion. 1999. Using Patterns to Model Variability in Product
Families. IEEE Soffware 16: 102-108.

Krueger, C. W. 2001. Software Mass Customization.
http:/ /www.biglever.com/ papets/ Bigl.everMassCustomization.pdf.

Lawrence-Ptleeger, S., and S. Bohner. 1990. A Framework for Software Maintenance
Mettics. IEEE Conference on Software Maintenance.

Lee, I<, K. C. Kang, W. Chae, and B.W. Choi. 2000. Feature-based Approach to Object-

Ornented Engineering of Applications for Reuse. Soffware-Practice and Experience
30: 1025-104¢6.

Linden, F. v. d., J. Bosch, E. Kamsties, K. K ans al"a, and H. Obbink. 2004. Software
Product Family Evaluation. Pages 110-129. the Third International Software Product
[ine Conference, SPLC 2004. Springer Boston, MA, USA.

Northrop, L. M. 2002. SEI's Software Product Line Tenets. IEEE § oftware 19: 32-40.

Ommering, R. v., F.v. d. Linden, and]. Kramer. 2000. The Koala component model for
consumer electronics software. [EEFE Computer 33: 78-85.

Parnas, D. 1976. The Design and Development of Program Families. [EEE Transactions

on software engineering SE-2,
QADA. from http://www.vtt.fi/ele/research /soh/ projects/ families/qada.htm.

Redondo, R. P. D, M. L. Nores, .]. P. Aris, A. F. Vilas, J. G. Duquej A. G. Solla, B. B.
Martinez, and M. R. Cabrer. 2004. Suppotting Software Vatability by Reusing
Generic Incomplete Models at the Requirements Specification Stage. Pages 1-10.
8th International Conference, [CSR 2004, Madrid, Spain.

Schmid, K., and M. Schank. 2000. PuLSE-BEAT -- A Decision Support Tool for
Scoping Product Lines. Pages 65-75. the International Workshop on Software
Architectures for Product Famrilies. Springer-Verlag

Svahnberg, M., . Gurp, and J. Bosch. 2001. On the Notion of Varability in Software
Product Lines. Pages 45-55. the Working IEEE/IFIP Conference on Software
Archetecture (WICS.A 2007),

Szypetski, C. 1997. Component Software: Beyond Object-Oriented Programming. Addison-Wesley
Protessional

Thiel, 5., and A. Hein. 2002. Systematic Integration of Variability into Product Line
Architecture Design. Pages 130 - 153 the Second International C onference on Sofiware
Product Lines (SPLLC2). S pringer-Verlag.

Tracz, W., L. Coglianese, and P. Young. 1993. A domain-specific software architecture
engineering process outline. SIGSOFT Software Engineering Notes 18: 40-49.

UML. from http://www.uml.org.

Weiss, D. 1995. Software Synthesis: The FAST Process. #he International Conference on
Computing in High Energy Physics (CHEP), Rio de Janeiro, Brazil.

—. 1998. Commonality Analysis: A Systematic Process for Defining Families. Second

Lnternational Workshop on Development and Evolution of Software Architectures for Product
Familzes.

Weiss, D., and C. T. R. La1. 1999. Software Product-Iine Engineering: A Family-Based Sofiware
Development Process. Addison Wesley, Reading, MA.

Employment

Dr. Waraporn]i.rﬂpaﬂﬂmﬂg

PhD. in Computer Science, Software Fngineering
Group, City University, London, UK.

MSc. in Computer Science (Best Sclence Student
with the Highest GPA Award from Professor Taeb
Nilanithi Foundation, Thailand, 2001), Faculty of
Science, Mahidol University, Thailand.

BSc. in Computer Science (First Class Honoutrs),
Faculty of Science, Thammasat University, Thailand.

[ecturer, Faculty of Information Technology,
Dhurakij Pundit University

	Cover
	ABS
	Chap_1
	Chap_2
	Chap_3
	Chap_4
	Chap_5
	Chap_6
	App-bip
	Vita

